vault backup: 2025-09-03 12:49:06

This commit is contained in:
arc
2025-09-03 12:49:06 -06:00
parent 7d41a7fc94
commit 07cdd1c97c

View File

@ -2,4 +2,9 @@ The below integration makes use of the following trig identities:
1. The Pythagorean identity: $\sin^2(x) + \cos^2(x) = 1$
2. The derivative of sine: $\frac{d}{dx}sin(x) = cos(x)$
3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$
$$ \cos^2(x) = \frac{}
4. Half angle cosine identity: $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$
5. Half angle sine identity: $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$
6. $tan^2(x) + 1 = sec^2(x) \Rightarrow \int \sec^2(x)$
7. $\dfrac{d}{dx}(\tan(x)) = \sec^2(x)$
8.