vault backup: 2025-03-25 09:36:37
This commit is contained in:
parent
5b7e97aa06
commit
05f59e4460
@ -51,4 +51,11 @@ $$ \int_{a}^b f(x) dx $$
|
||||
And __can__ be defined as:
|
||||
$$ \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i = 1}^n f(x_i)\Delta x$$
|
||||
|
||||
$f(x_i)$ is the *height* of each sub-interval, and $\Delta x$ is the change in the *x* interval, so $f(x_i) \Delta x$ is solving for the area of each sub-interval.
|
||||
$f(x_i)$ is the *height* of each sub-interval, and $\Delta x$ is the change in the *x* interval, so $f(x_i) \Delta x$ is solving for the area of each sub-interval.
|
||||
|
||||
## Examples
|
||||
> Find the exact value of the integral $\int_0^1 5x \space dx$
|
||||
|
||||
Relevant formula:
|
||||
$$ \sum_{i = 1}^n = \dfrac{(n)(n + 1)}{2} $$
|
||||
1. $
|
Loading…
x
Reference in New Issue
Block a user