vault backup: 2025-03-25 09:36:37

This commit is contained in:
arc 2025-03-25 09:36:37 -06:00
parent 5b7e97aa06
commit 05f59e4460

View File

@ -51,4 +51,11 @@ $$ \int_{a}^b f(x) dx $$
And __can__ be defined as:
$$ \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i = 1}^n f(x_i)\Delta x$$
$f(x_i)$ is the *height* of each sub-interval, and $\Delta x$ is the change in the *x* interval, so $f(x_i) \Delta x$ is solving for the area of each sub-interval.
$f(x_i)$ is the *height* of each sub-interval, and $\Delta x$ is the change in the *x* interval, so $f(x_i) \Delta x$ is solving for the area of each sub-interval.
## Examples
> Find the exact value of the integral $\int_0^1 5x \space dx$
Relevant formula:
$$ \sum_{i = 1}^n = \dfrac{(n)(n + 1)}{2} $$
1. $