vault backup: 2025-10-06 12:44:06

This commit is contained in:
arc
2025-10-06 12:44:06 -06:00
parent 9153235225
commit 0123762cee
2 changed files with 31 additions and 0 deletions

View File

@@ -0,0 +1,27 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": false,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@@ -118,3 +118,7 @@ Then if the *series converges* absolutely then the sum converges.
- $\lim_{n \to \infty} a_n = 0$ - the series approaches zero
All three conditions hold true, therefore we know that $\sum_{n=1}^\infty \frac{(-1)^n}{n+5}$ conditionally converges.
## Error
Let $\sum_{n=1}^\infty (-1)^n a_n$ be a series shown to converge by the alternating series test, and that it converges to a $L$. Then the remainder for a given term $N$ is $R_N = L - S_N$ . So $|R_N| \le a_{N+1}$.
So to determine the given error for any number of the series,