From 0123762cee6f34bf9588fd19305c2033be371ea5 Mon Sep 17 00:00:00 2001 From: arc Date: Mon, 6 Oct 2025 12:44:06 -0600 Subject: [PATCH] vault backup: 2025-10-06 12:44:06 --- .obsidian/plugins/obsidian-git/data.json | 27 +++++++++++++++++++ .../math/MATH1220 (calc II)/Sequences.md | 4 +++ 2 files changed, 31 insertions(+) diff --git a/.obsidian/plugins/obsidian-git/data.json b/.obsidian/plugins/obsidian-git/data.json index e69de29..4bc189e 100644 --- a/.obsidian/plugins/obsidian-git/data.json +++ b/.obsidian/plugins/obsidian-git/data.json @@ -0,0 +1,27 @@ +{ + "commitMessage": "vault backup: {{date}}", + "autoCommitMessage": "vault backup: {{date}}", + "commitDateFormat": "YYYY-MM-DD HH:mm:ss", + "autoSaveInterval": 5, + "autoPushInterval": 0, + "autoPullInterval": 5, + "autoPullOnBoot": false, + "disablePush": false, + "pullBeforePush": true, + "disablePopups": false, + "listChangedFilesInMessageBody": false, + "showStatusBar": true, + "updateSubmodules": false, + "syncMethod": "merge", + "customMessageOnAutoBackup": false, + "autoBackupAfterFileChange": false, + "treeStructure": false, + "refreshSourceControl": true, + "basePath": "", + "differentIntervalCommitAndPush": false, + "changedFilesInStatusBar": false, + "showedMobileNotice": true, + "refreshSourceControlTimer": 7000, + "showBranchStatusBar": true, + "setLastSaveToLastCommit": false +} \ No newline at end of file diff --git a/education/math/MATH1220 (calc II)/Sequences.md b/education/math/MATH1220 (calc II)/Sequences.md index e1bc0d3..c61dc78 100644 --- a/education/math/MATH1220 (calc II)/Sequences.md +++ b/education/math/MATH1220 (calc II)/Sequences.md @@ -118,3 +118,7 @@ Then if the *series converges* absolutely then the sum converges. - $\lim_{n \to \infty} a_n = 0$ - the series approaches zero All three conditions hold true, therefore we know that $\sum_{n=1}^\infty \frac{(-1)^n}{n+5}$ conditionally converges. +## Error +Let $\sum_{n=1}^\infty (-1)^n a_n$ be a series shown to converge by the alternating series test, and that it converges to a $L$. Then the remainder for a given term $N$ is $R_N = L - S_N$ . So $|R_N| \le a_{N+1}$. + +So to determine the given error for any number of the series, \ No newline at end of file