The intersection of the averages of x and y will be the center of an oval shaped scatter diagram. Draw lines $2\sigma$ (will contain ~95% of all data) from the center along each axis to generalize the shape of a scatter plot.
You can approximate the mean by trying to find the upper bound and the lower bound of $2\sigma$ deviation to either side of the mean, then finding the middle of those two points to find $\bar{x}$. You can divide the range between the two points by 4 to find $\sigma$.
Correlation is between `-1` and `1`. Correlation near 1 means tight clustering, and correlation near 0 means loose clustering. $r$ is -1 if the points are on a line with negative slope, $r$ is positive 1 if the points are on a line with a positive slope. As $|r|$ gets closer to 1, the line points cluster more tightly around a line.
- The size of points may indicate the size of the datapoints
# Regression
(Chapter 10, STAT 1040)
## Notes
- Regression uses values of one variable to predict values for a related value.
- The variable you are trying to predict is called the *response variable*. It is graphed along the *y-axis*.
The variable you have information about that you are using to make the prediction is called the *explanatory variable*. It is graphed along the *x-axis*.