The intersection of the averages of x and y will be the center of an oval shaped scatter diagram. Draw lines $2\sigma$ (will contain ~95% of all data) from the center along each axis to generalize the shape of a scatter plot.
You can approximate the mean by trying to find the upper bound and the lower bound of $2\sigma$ deviation to either side of the mean, then finding the middle of those two points to find $\mu$. You can divide the range between the two points by 4 to find $\sigma$.
Correlation is between `-1` and `1`. Correlation near 1 means tight clustering, and correlation near 0 means loose clustering. $r$ is -1 if the points are on a line with negative slope, $r$ is positive 1 if the points are on a line with a positive slope. As $|r|$ gets closer to 1, the line points cluster more tightly around a line.
Put the $x$ values into $L1$, put the $y$ values into $L2$.
Convert the $x$ values to standard units. Convert the $y$ values to standard units. Multiply the standard units for each x y pair. Find the average of the values from step 3, this is $r$.