1.7 KiB
1.7 KiB
Intro
Tl;dr, the law of sines is:
\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}
Under convention:
-
Angle
\alpha
is opposite sidea
-
Angle
\beta
is opposite sideb
-
Angle
\gamma
is opposite sidec
-
Any triangle that is not a right triangle is called an oblique triangle. There are two types of oblique triangles:
- Acute triangles: This is an oblique triangle where all three interior angles are less than
90\degree
or\dfrac{\pi}{2}
radians. - Obtuse Triangle: This is an oblique triangle where one of the interior angles is greater than
90\degree
.
- Acute triangles: This is an oblique triangle where all three interior angles are less than
Different types of oblique triangles
- ASA Triangle: (Angle Side Angle) - We know the measurements of two angles and the side between them
- AAS: We know the measurements of two angles and a side that is not between the known angles.
- SSA: We know the measurements of two sides and an angle that is not between the known sides.
These triangles can be solved by adding a line that goes from one vertex to intersect perpendicular to the opposite side, forming two right triangles (
h
).
Solving for the law of sines
We know that \sin\alpha = \dfrac{h}{b}
and \sin\beta = \dfrac{h}{a}
. We can sole both equations for h
to get:
h = b\sin\alpha
- $h = a\sin\beta$
Setting both equations equal to each other gives us:
b\sin\alpha = a\sin\beta
Multiply both sides by \dfrac{1}{ab}
gives yields \dfrac{\sin\alpha}{a} = \dfrac{\sin\beta}{b}
SSA triangles
Side side angle triangles may be solved to have one possible solution, two possible solutions, or no possible solutions.
- No triangle:
a < h
- One triangle:
a \ge b
- Two triangles:
h < a < b
- One right triangle:
a = h