notes/education/math/MATH1060 (trig)/Addition and Subtraction.md
2024-10-24 10:23:18 -06:00

1.3 KiB

Given the formula \sin(\alpha + \beta):

 \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) 
 \sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) 

Given the formula \cos(\alpha + \beta):

 \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) 
 \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) 

Given the formula \tan(\alpha + \beta):

\tan(\alpha + \beta) = \dfrac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} 
\tan(\alpha - \beta) = \dfrac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta} 

Cofunctions

Given that cofunctions are two functions that add up to 90 degrees, you can use the trig identities for sum and difference to find cofunctions.

For a right triangle where \alpha = \theta, \beta = \frac{\pi}{2} - \theta.

This means that \sin(\theta) = \cos(\frac{\pi}{2} - \theta)

Using this information, you can derive various cofunction identities.

\sin\theta = \cos(\frac{\pi}{2} - \theta) \cos\theta = \sin(\frac{\pi}{2} - \theta)
\tan\theta = \cot(\frac{\pi}{2} - \theta) \cot\theta = \tan(\frac{\pi}{2} - \theta))
\sec\theta = \csc(\frac{\pi}{2} - \theta) \csc\theta = \sec(\frac{\pi}{2} - \theta)