# Properties of Boolean Algebra | Number | Col. A | Col. A Description | Col. B | Col. B Description | | ------ | ---------------------------------- | ------------------ | ---------------------------------- | ------------------ | | 1. | $0 \cdot 0 = 0$ | | $1 + 1 = 1$ | | | 2. | $1 \cdot 1 = 1$ | | $0 + 0 = 0$ | | | 3. | $0 \cdot 1 = 1 \cdot 0 = 0$ | | $1 + 0 = 0 + 1 = 1$ | | | 4. | if $x = 0$ then $\overline{x} = 1$ | | if $x = 1$ then $\overline{x} = 0$ | | | 5. | | | | | | 6. | | | | | | 7. | | | | | | 8. | | | | | | 9. | | | | | | 10. | | | | | | 11. | | | | | | 12. | | | | | | 13. | | | | | | 14. | | | | | | 15. | | | | | | 16. | | | | | | 17. | | | | | # Logic Gates ![](./assets/logic-gates.jpeg) # NOT Gate A binary NOT gate has a single input, and inverts that input (output is not the input). ## Truth Table | $x$ | $y$ | | --- | --- | | 0 | 1 | | 1 | 0 | ## Mathematical Expression A NOT operation is mathematically expressed using a bar: $$ y = \bar{x} $$ # AND Gate An AND gate will only output a 1 if *both* inputs are a one (input one *and* input two are enabled). ## Truth Table | $x_1$ | $x_2$ | $y$ | | ----- | ----- | --- | | 0 | 0 | 0 | | 0 | 1 | 0 | | 1 | 0 | 0 | | 1 | 1 | 1 | ## Mathematical Expression An AND operation is mathematically expressed using a times symbol, or with no symbol at all: $$ y = x_1 \cdot x_2 = x_1x_2$$ # NAND Gate A NAND gate outputs a 1 *unless* both inputs are enabled (input one *and* input two are *not* enabled). ## Truth Table | $x_1$ | $x_2$ | $y$ | | ----- | ----- | --- | | 0 | 0 | 1 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | ## Mathematical Expression A NAND operation is mathematically expressed using a bar over an AND operation: $$ y = \overline{x_1 \cdot x_2}$$ # OR Gate An OR gate outputs a 1 if either or both inputs are enabled (if input one *or* input two is enabled). ## Truth Table | $x_1$ | $x_2$ | $y$ | | ----- | ----- | --- | | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 1 | ## Mathematical Expression A mathematical OR is notated with a $+$ symbol. $$ y = x_1 + x_2 $$ # NOR Gate A NOR gate outputs a one if neither gate is enabled. ## Truth Table | $x_1$ | $x_2$ | $y_1$ | | ----- | ----- | ----- | | 0 | 0 | 1 | | 0 | 1 | 0 | | 1 | 0 | 0 | | 1 | 1 | 0 | ## Mathematical Expression A NOR operation is expressed using a bar over an OR operation. $$ y = \overline{x_1 + x_2} $$ # XOR Gate An XOR gate is on if one input is enabled, but *not* both (exclusively one or the other). ## Truth Table | $x_1$ | $x_2$ | $y$ | | ----- | ----- | --- | | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | ## Mathematical Expression An XOR operation is expressed using a circle around an addition symbol: $$ y = x_1 \oplus x_2 $$ ## XNOR Gate An XNOR gate is on if neither input is enabled, or both inputs are enabled. ## Truth Table | $x_1$ | $x_2$ | $y$ | | ----- | ----- | --- | | 0 | 0 | 1 | | 0 | 1 | 0 | | 1 | 0 | 0 | | 1 | 1 | 1 | ## Mathematical Expression An XNOR operation is expressed using a bar over an XOR operation: $$ y = \overline{x_1 \oplus x_2} $$