An **identity** is an equation that is true for all values of the variable for which the expressions in the equation are defined. # Trigonometric Identities All of the following only apply when the denominator is not equal to zero. $$ tan \theta = \frac{y}{x} $$ Because the following are inverses of their counterparts, you only need to remember the equivalents for $sin$, $cos$, and $tan$, then just find the inverse by taking $1/v$. | Base Identity | Inverse Identity | Alternate Identities | Alternate Inverse Identities | | ----------------------------- | ------------------------------ | --------------------------------------------- | --------------------------------------------------------------------- | | $$ sin\theta = y $$ | $$ csc\theta = \frac{1}{y} $$ | | $$ csc\theta = \frac{1}{sin\theta} $$ | | $$ cos\theta = x $$ | $$ sec \theta = \frac{1}{x} $$ | | $$ sec\theta = \frac{1}{cos\theta} $$ | | $$ tan\theta = \frac{y}{x} $$ | $$ cot\theta = \frac{x}{y} $$ | $$ tan\theta = \frac{sin\theta}{cos\theta} $$ | $$ cot\theta = \frac{1}{tan\theta} = \frac{cos\theta}{sin{\theta}} $$ | # Pythagorean Identities The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions. $$ sin^2 \theta + cos^2 \theta = 1 $$ There are more forms that are useful, but they can be derived from the above formula: $$ 1 + tan^2\theta = sec^2\theta $$ $$ cot^2 \theta + 1 = csc^2\theta $$ # Even and Odd Identities - A function is even if $f(-x) = f(x)$. - A function is odd if $f(-x) = -f(x)$ - Cosine and secant are **even** - Sine, tangent, cosecant, and cotangent are **odd**. ## Examples ### Even and Odd Functions > If $cot\theta = -\sqrt{3}$, what is $cot(-\theta)$? $cot$ is an odd function, and so $cot(-\theta) = \sqrt{3}$ ### Simplifying Using Identities > Simplify $\frac{sin\theta}{cos\theta}$ 1. The above equation can be split into two components $$ \frac{sin\theta}{cos\theta} = \frac{sin\theta}{1} * \frac{1}{csc\theta} $$ 2. Referring to the list of trig identities, we know that $\frac{1}{csc\theta}$ is equal to $sin\theta$. $$ \frac{sin\theta}{1} * \frac{1}{csc\theta} = sin\theta * sin\theta $$ 3. Simplifying further, we get: $$ sin^2\theta $$ ### Finding all values using identities If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the other 5 trig functions: 1. To find $tan\theta$, we can use the trig identity $1 + tan^2\theta = sec^2\theta$: $$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$ Shuffling things around, we get this: $$ tan^2\theta = \frac{625}{49} - 1 $$ Performing that subtraction gives us this: $$ \frac{625}{49} - \frac{49}{49} = \frac{576}{49} = tan^2\theta $$ You can get rid of the exponent: $$ \sqrt{\frac{576}{49}} = tan\theta $$ $\sqrt{576} = 24$ and $\sqrt{49} = 7$, so: $$ tan\theta = \frac{24}{7} $$ 2. To find $cos\theta$, because $sec$ is the inverse of $cos$, we can use the identity $sec\theta = \frac{1}{cos\theta}$: $cos\theta = -\frac{7}{25}$ 3. To find $sin\theta$, we can use the trig identity $sin^2\theta + cos^2\theta = 1$: $$ sin^2\theta + (-\frac{7}{25}) = 1 $$ Rearranging, we get: $$ 1 - (-\frac{7}{25})^2 = sin^2\theta $$ Applying the exponent gives us $\frac{49}{625}$, so we can do this: $$ \frac{625}{625} - \frac{49}{625} = \frac{576}{625} = sin^2\theta $$ Getting rid of the exponent: $$ \sqrt{\frac{576}{625}} = \frac{24}{25} = sin\theta $$ From there, you can find the rest of the identities fairly easily. # Simplifying trig expressions using identities Given the difference of square formula: $$ a^2 - b^2 = (a-b)(a+b) $$ ## Examples Simplify $\tan\theta\sin\theta + \cos\theta$: 1. $\dfrac{\sin\theta}{\cos\theta} * \sin\theta + \cos\theta$ 2. $\dfrac{\sin^2\theta}{cos\theta} + \cos\theta$ 3. $(\dfrac{\sin^2\theta}{cos\theta} + \cos\theta)\dfrac{\cos\theta}{\cos\theta} = \sin^2\theta*\cos^2\theta + \cos\theta$ Si\