# History of Boolean Algebra
- In 1849, George Boole published a scheme for describing logical thought and reasoning
- In the 1930s, Claude Shannon applied Boolean algebra to describe circuits built with switches
- Boolean algebra provides the theoretical foundation for digital design

# Properties of Boolean Algebra
| Number                 | Col. A                                                                            | Col. A Description | Col. B                                                                              | Col. B Description |
| ---------------------- | --------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------- | ------------------ |
| 1.                     | $0 \cdot 0 = 0$                                                                   |                    | $1 + 1 = 1$                                                                         |                    |
| 2.                     | $1 \cdot 1 = 1$                                                                   |                    | $0 + 0 = 0$                                                                         |                    |
| 3.                     | $0 \cdot 1 = 1 \cdot 0 = 0$                                                       |                    | $1 + 0 = 0 + 1 = 1$                                                                 |                    |
| 4.                     | if $x = 0$ then $\overline{x} = 1$                                                |                    | if $x = 1$ then $\overline{x} = 0$                                                  |                    |
| 5.                     | $x \cdot 0 = 0$                                                                   |                    | $x + 1 = 1$                                                                         |                    |
| 6.                     | $x \cdot 1 = x$                                                                   |                    | $x + 0 = x$                                                                         |                    |
| 7.                     | $x \cdot x = x$                                                                   |                    | $x + x = x$                                                                         |                    |
| 8.                     | $x \cdot \overline{x} = 0$                                                        |                    | $$x + \overline{x} = 1$                                                             |                    |
| 9.                     | $\overline{\overline{x}} = x$                                                     |                    |                                                                                     |                    |
| 10. Commutative        | $x \cdot y = y \cdot x$                                                           |                    | $x + y = y + x$                                                                     |                    |
| 11. Associative        | $x \cdot (y \cdot z) = (x \cdot y) \cdot z$                                       |                    | $x + (y + z) = (x + y) +z$                                                          |                    |
| 12. Distributive       | $x \cdot (y +z) = x \cdot y + x \cdot z$                                          |                    | $x + y \cdot z = (x + y) \cdot (x + z$                                              |                    |
| 13. Absorption         | $x + x \cdot y = x$                                                               |                    | $x \cdot (x + y) = x$                                                               |                    |
| 14. Combining          | $x \cdot y + x \cdot \overline{y} = x$                                            |                    | $(x + y) \cdot (x + \overline{y}) = x$                                              |                    |
| 15. DeMorgan's Theorem | $\overline{x \cdot y} = \overline{x} + \overline{y}$                              |                    | $x + y = \overline{x} \cdot \overline{y}$                                           |                    |
| 16.                    | $x + \overline{x} \cdot y = x + y$                                                |                    | $x \cdot (\overline{x} + y) = x \cdot y$                                            |                    |
| 17. Consensus          | $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ |                    | $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$ |                    |
# Synthesis
In the context of binary logic, synthesis refers to the act of creating a boolean expression that evaluates to match a given truth table. 

This is done by creating a product term for each entry in the table that has an output of $1$, that also evaluates to $1$, then ORing each product term together and then simplifying.

Example:

Given the below truth table, synthesize a boolean expression that corresponds.

| $x_1$ | $x_2$ | $f(x_1, x_2)$ |
| ----- | ----- | ------------- |
| 0     | 0     | 1             |
| 0     | 1     | 1             |
| 1     | 0     | 0             |
| 1     | 1     | 1             |
- $f(0, 0)$ evaluates to true with the expression $\overline{x}_1 \cdot \overline{x}_2$ 
- $f(0, 1)$ evaluates to true with the expression $\overline{x}_1\cdot x_2$ 
- $f(1, 0)$ should provide an output of zero, so that can be ignored
- $f(1, 1)$ evaluates to true with the expression $x_1 \cdot x_2$
ORing all of the above expression together, we get:
$$ f(x_1, x_2) = \overline{x}_1\overline{x}_2 + \overline{x}_1 x_2 + x_1x_2 $$
$$
\begin{multline}
= x_1x_2 \\
= x
\end{multline}
$$
# Logic Gates

![](./assets/logic-gates.jpeg)
# NOT Gate
A binary NOT gate has a single input, and inverts that input (output is not the input).

## Truth Table
| $x$ | $y$ |
| --- | --- |
| 0   | 1   |
| 1   | 0   |
## Mathematical Expression
A NOT operation is mathematically expressed using a bar:
$$ y = \bar{x} $$
# AND Gate
An AND gate will only output a 1 if *both* inputs are a one (input one *and* input two are enabled).

## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0     | 0     | 0   |
| 0     | 1     | 0   |
| 1     | 0     | 0   |
| 1     | 1     | 1   |
## Mathematical Expression
An AND operation is mathematically expressed using a times symbol, or with no symbol at all:
$$ y = x_1 \cdot x_2 = x_1x_2$$

# NAND Gate
A NAND gate outputs a 1 *unless* both inputs are enabled (input one *and* input two are *not* enabled).

## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0     | 0     | 1   |
| 0     | 1     | 1   |
| 1     | 0     | 1   |
| 1     | 1     | 0   |
## Mathematical Expression
A NAND operation is mathematically expressed using a bar over an AND operation:
$$ y = \overline{x_1 \cdot x_2}$$


# OR Gate
An OR gate outputs a 1 if either or both inputs are enabled (if input one *or* input two is enabled).
## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0     | 0     | 0   |
| 0     | 1     | 1   |
| 1     | 0     | 1   |
| 1     | 1     | 1   |
## Mathematical Expression
A mathematical OR is notated with a $+$ symbol.

$$ y = x_1 + x_2 $$
# NOR Gate
A NOR gate outputs a one if neither gate is enabled.
## Truth Table
| $x_1$ | $x_2$ | $y_1$ |
| ----- | ----- | ----- |
| 0     | 0     | 1     |
| 0     | 1     | 0     |
| 1     | 0     | 0     |
| 1     | 1     | 0     |
## Mathematical Expression
A NOR operation is expressed using a bar over an OR operation.
$$ y = \overline{x_1 + x_2} $$
# XOR Gate
An XOR gate is on if one input is enabled, but *not* both (exclusively one or the other).

## Truth Table
| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0     | 0     | 0   |
| 0     | 1     | 1   |
| 1     | 0     | 1   |
| 1     | 1     | 0   |
## Mathematical Expression
An XOR operation is expressed using a circle around an addition symbol:
$$ y = x_1 \oplus x_2 $$

## XNOR Gate
An XNOR gate is on if neither input is enabled, or both inputs are enabled.

## Truth Table

| $x_1$ | $x_2$ | $y$ |
| ----- | ----- | --- |
| 0     | 0     | 1   |
| 0     | 1     | 0   |
| 1     | 0     | 0   |
| 1     | 1     | 1   |
## Mathematical Expression
An XNOR operation is expressed using a bar over an XOR operation:
$$ y = \overline{x_1 \oplus x_2} $$