Given the formula $\sin(\alpha + \beta)$: $$ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) $$ $$ \sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) $$ Given the formula $\cos(\alpha + \beta)$: $$ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) $$ $$ \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) $$ Given the formula $\tan(\alpha + \beta)$: $$\tan(\alpha + \beta) = \dfrac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} $$ $$\tan(\alpha - \beta) = \dfrac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta} $$ ## Cofunctions Given that cofunctions are two functions that add up to 90 degrees, you can use the trig identities for sum and difference to find cofunctions. For a right triangle where $\alpha = \theta$, $\beta = \frac{\pi}{2} - \theta$. This means that $\sin(\theta) = \cos(\frac{\pi}{2} - \theta)$ Using this information, you can derive various cofunction identities. | $\sin\theta = \cos(\frac{\pi}{2} - \theta)$ | $\cos\theta = \sin(\frac{\pi}{2} - \theta)$ | | ------------------------------------------- | -------------------------------------------- | | $\tan\theta = \cot(\frac{\pi}{2} - \theta)$ | $\cot\theta = \tan(\frac{\pi}{2} - \theta))$ | | $\sec\theta = \csc(\frac{\pi}{2} - \theta)$ | $\csc\theta = \sec(\frac{\pi}{2} - \theta)$ |