(Chapter 8, STAT 1040) # Correlation ## Scatter Diagrams A scatter diagram or scatter plot shows the relationship between two variables. One variable is on the X axis, the other on the Y axis. If a scatter diagram is football shaped, it can be summarized using the 5-number summary: | Variable | Description | | -- | -- | | $ave_x$ | The average of the set graphed along the X axis | | $SD_x$| The standard deviation of set graphed along the X axis | | $ave_y$ | The average of the set graphed along the Y axis | | $SD_y$ | The standard deviation of the set graphed along the Y axis | | $r$ | The correlation coefficient, or how closely clustered the datapoints are in a line| The intersection of the averages of x and y will be the center of an oval shaped scatter diagram. Draw lines 2SDs from the center along each axis to generalize the shape of a scatter plot ### Association - Positive association is demonstrated when the dots are trend upward as $x$ increases ($r$ is positive). - Negative association is demonstrated when the the dots trend downward as $x$ increases ($r$ is negative). - Strong association is demonstrated when dots are clustered tightly together along a line ($|r|$ is closer to 1). - Weak association is demonstrated when dots are not clustered tightly. ($|r|$ is closer to 0) ## Correlation Correlation is between `-1` and `1`. Correlation near 1 means tight clustering, and correlation near 0 means loose clustering. $r$ is -1 if the points are on a line with negative slope, $r$ is positive 1 if the points are on a line with a positive slope. As $|r|$ gets closer to 1, the line points cluster more tightly around a line. # Terminology | Term | Definition | | -- | -- | | $r$ | Correlation Coefficient | | Linear Correlation | Measures the strength of a line |