The integration by parts formula is: $$ \int udv = uv - \int vdu $$ ## Deriving the Integration by Parts Formula $$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$ 1. Integrating both sides, we get: $$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$ 2. Through the distributive property of integrals, $$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$ 3. An integral cancels out an antiderivative, therefore: $$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$ 4. Moving terms around: $$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$ Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$. # Examples