# Formal Definition Let $f$ be a continuous function on an interval $[a, b]$. Divide $[a, b]$ into $n$ equal parts of width $\Delta x = \dfrac{b-a}{n}$. Let $x_0, x_1, x_2, \cdots, x_n$ be the endpoints of this subdivision. $x_0 = a$ and $x_n = b$. Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$ - $\Delta x$ refers to the width of each sub-interval, or $\frac{b-a}{n}$. - $f(x_i)$ refers to the height of each subinterval, and can be found with the equation $x_i = \Delta xi + a$ - Or, the width of each interval times the interval index, plus the starting offset. Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$). Then $\int_a^b f(x) dx = F(b) - F(a)$. ## Examples $$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ $$ \int_{-2}^2 2x + 2dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$