# Sine/Cosine ![A graph of sine and cosine](./assets/graphsincos.png) Given the above graph: - At the origin, $sin(x) = 0$ and $cos(x) = 1$ - A full wavelength takes $2\pi$ # Manipulation | Formula | Movement | | ---------------- | ---------------------------------- | | $y = cos(x) - 1$ | Vertical shift down by 1 | | $y = 2cos(x)$ | Vertical stretch by a factor of 2 | | $y = -cos(x)$ | Flip over x axis | | $y = cos(2x)$ | Horizontal shrink by a factor of 2 | # Periodic Functions A function is considered periodic if it repeats itself at even intervals, where each interval is a complete cycle, referred to as a *period*. # Sinusoidal Functions A function that has the same shape as a sine or cosine wave is known as a sinusoidal function. There are 4 general functions: | $$A * sin(B*x - C) + D$$ | $$ y = A * cos(B*x -c) + D$$ | | ----------------------------------------- | -------------------------------------- | | $$ y = A * sin(B(x - \frac{C}{B})) + D $$ | $$ y = A*cos(B(x - \frac{C}{B})) + D$$ | How to find the: - Amplitude: $|A|$ - Period: $\frac{2\pi}{B}$ - Phase shift: $\frac{C}{|B|}$ - Vertical shift: $D$ $$ y = A * \sin(B(x-\frac{C}{B})) $$ # Tangent/Cotangent $$ y = tan(x) $$ ![Graph of tangent](assets/graphtan.png) To find relative points to create the above graph, you can use the unit circle: If $tan(x) = \frac{sin(x)}{cos(x})$, then: | $sin(0) = 0$ | $cos(0) = 1$ | $tan(0) = \frac{cos(0)}{sin(0)} = \frac{0}{1} =0$ | | ----------------------------------------- | ----------------------------------------- | ----------------------------------------------------------------- | | $sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ | $tan(\frac{\pi}{4} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}{}}$ | | $sin(\frac{\pi}{2}) = 1$ | $cos(\frac{\pi}{2}) = 0$ | | $$ y = cot(x) $$ ![Graph of cotangent](assets/graphcot.svg)