The integration by parts formula is: $$ \int udv = uv - \int vdu $$ ## Deriving the Integration by Parts Formula $$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$ 1. Integrating both sides, we get: $$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$ 2. Through the distributive property of integrals, $$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$ 3. An integral cancels out an antiderivative, therefore: $$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$ 4. Moving terms around: $$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$ Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$. # Examples > Evaluate the below antiderivative using integration by parts. $$\int xe^{2x}dx$$ 1. Define $u$ to be a value you can take the derivative of easily, in this case $u = x$. The rest of the integral will be set to $dv$, in this case, $dv = e^{2x}dx$. - $u = x$ - $du = \frac{d}{dx}(x)= 1dx$ - $dv = e^{2x}dx$ - $v = \frac{1}{2}e^{2x}$ - The antiderivative of $dv$. 2. Looking back at the integration by parts formula, we know that: $$ \int udv = uv - \int v du $$