To solve for a double or half angle identity: 1. Draw a triangle 2. Choose an identity to use 3. Substitute into formula # Double Angle Identities Sine: $$ \sin(2\theta) = 2\sin\theta\cos\theta $$ Cosine: $$ \begin{matrix} \cos(2\theta) = \cos^2\theta - \sin^2\theta\\ = 1 - 2sin^2\theta\\ = 2cos^2\theta - 1\\ \end{matrix} $$ Tan: $$ \tan(2\theta) = \dfrac{2\tan\theta}{1-\tan^2\theta}$$ ## Half Angle Identities Whether the output is positive or negative depends on what quadrant the output is in. Sine: $$ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1-\cos\theta}{2}} $$ Cosine: $$ \cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos\theta}{2}} $$ Tangent: $$ \begin{matrix} \tan(\dfrac{\theta}{2}) = \pm\sqrt{\dfrac{1-\cos\theta}{1 + \cos\theta}}\\ = \dfrac{\sin\theta}{1 + \cos\theta}\\ = \dfrac{1 - cos\theta}{\sin\theta} \end{matrix} $$