The below integration makes use of the following trig identities: 1. The Pythagorean identity: $\sin^2(x) + \cos^2(x) = 1$ 2. The derivative of sine: $\frac{d}{dx}sin(x) = cos(x)$ 3. The derivative of cosine: $\dfrac{d}{dx} \cos(x) = -\sin(x)$ 4. Half angle cosine identity: $\cos^2(x) = \frac{1}{2}(1 + \cos(2x))$ 5. Half angle sine identity: $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$ 6. $tan^2(x) + 1 = sec^2(x)$ 7. $\dfrac{d}{dx}(\tan(x)) = \sec^2(x) \Rightarrow \int \sec^2(x)dx = \tan(x) + C$ 8. $\dfrac{d}{dx}(\sec x) = \sec(x)\tan(x) \Rightarrow \int\sec(x)\tan(x) dx = \sec(x) + C$ # Examples > Evaluate the integral $\int\sin^5(x)dx$ 1. With trig identities, it's common to work *backwards* with u-sub. In the above example, we can convert the equation into simpler cosine functions by setting $du$ to $-\sin(x)dx$. This means that $u$ is equal to $cos(x)$. $$ \int\sin^4(x)\sin(x)dx$$ 2. Rewrite $sin^4(x)$ to be $(\sin^2(x))^2$ to take advantage of the trig identity $1 - \cos^2(x) = \sin^2(x)$ $$ \int(\sin^2x)^2 \sin(x)dx$$ 3. Apply the above trig identity and substitute $u$: $$ \int(1 - u^2)^2 (-du) $$ 4. Foil out and move negative out of integral: $$ -\int(1 - 2u^2 + u^4)du $$ 5. Take advantage of the distributive property of integrals: $$ - (u - \frac{2}{3}u^3 + \frac{1}{5}u^5) + C $$ 6. Substituting $\cos(x)$ back in for $u$, we get the evaluated (but not entirely simplified) integral: $$-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x) $$ # Trigonometric Substitutions Trigonometric substitution is useful for equations containing $\sqrt{a^2 + x^2}$ or $a^2 + x^2$, where $a$ is any constant. It removes any addition or subtraction. The general process involves the use of a trig identity and multiplying everything in that identity by a constant. Consider the identity: $$ 1 + \tan^2(\theta) = \sec^2(\theta)$$ Multiplying both sides of the identity by $a^2$, we get: $$a^2 + a^2\tan^2(\theta) = a^2\sec^2(\theta)$$ This enables us to make use of **substitution** to simplify many integrals. - $x = a\tan \theta$ - $dx = a \sec^2\theta d\theta$ - for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ # Examples > Evaluate the integral $\int\frac{3}{4+x^2}dx$ 1. Move the constant coefficient out of the integral: $$ \int \frac{3}{4+x^2}dx = 3\int \frac{1}{4 + x^2}dx$$ 2. Let $x = 2tan\theta$ and $dx = (2sec^2\theta d\theta)$, substitute accordingly $$ = 3\int\frac{1}{4 + 4\tan^2\theta}(2\sec^2\theta)d\theta$$ 3. Factor $4$ out in the denominator $$ = 3\int\frac{1}{4(1 + \tan^2\theta)}(2\sec^2\theta)d\theta$$ 4. Considering the identity $1 + \tan^2 \theta = \sec^2 \theta$ $$ = 3\int\frac{1}{4(\sec^2\theta)}(2\sec^2\theta)d\theta$$ 5. $\sec^2\theta$ is present in the numerator and the denominator, so we can cancel those out. This means that: $$ 3\int\frac{2}{4}d\theta = \frac{3}{2} \theta + C$$ 6. At this point, we want to determine what $\theta$ is equal to relative to $x$. 1. Look back to step 2 we defined $x = 2\tan\theta$ 2. Moving $2$ to the other side, we get $\frac{x}{2} = \tan\theta$ 3. Because we defined bounds for our definition of $\theta$, we can take advantage of $\arctan$, therefore: $$ \theta = \arctan(\frac{x}{2}) $$ 7. Rewriting the equation with $\theta$ in terms of x, we get: $$ \frac{3}{2}\arctan(\frac{x}{2}) + C$$ This means that: $$ \int\frac{3}{4+x^2}dx = \frac{3}{2}\arctan(\frac{x}{2}) + C $$