Compare commits

...

2 Commits

Author SHA1 Message Date
arc
1867f4356d vault backup: 2025-04-15 10:01:58 2025-04-15 10:01:58 -06:00
arc
95f378fa05 vault backup: 2025-04-15 09:56:58 2025-04-15 09:56:58 -06:00
2 changed files with 39 additions and 1 deletions

View File

@ -0,0 +1,27 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -178,4 +178,15 @@ $$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$
13. $= \frac 1 2 \int_{1/2}^5 (x^2 - x^{-2})dx$: Find the indefinite integral
14. $= \dfrac{1}{2} (\frac{1}{3}x^3 - x^-1)\Big|_{1/2}^5$ : Plug and chug
15. $= (\frac{125}{6} - \frac{1}{10}) - (\frac{1}{48} - 1)$
16. $=(\frac{5000}{240} - \frac{24}{240}) - (\frac{5}{240} - \frac{240}{240})$
16. $=(\frac{5000}{240} - \frac{24}{240}) - (\frac{5}{240} - \frac{240}{240})$
> Find the length of the curve $y = \sqrt{1 - x^2}$
1. $y$ has a domain of $[-1, 1]$
2. $y' = \dfrac{1}{2}(1-x^2)^{-1/2}(-2x)$
3. $= -\dfrac{x}{\sqrt{1 - x^2}}$
4. $L = \int_{-1}^1 \sqrt{1 + (-\dfrac{x}{\sqrt{1-x^2}})^2}dx$
5. $L = \int_{-1}^1 \sqrt{1 + \dfrac{x^2}{1-x^2}}dx$
6. $L = \int_{-1}^1 \sqrt{\dfrac{1}{1-x^2}}dx$
7. $L = \int_{-1}^1 \dfrac{1}{\sqrt{1-x^2}}dx$
8. $L = \arcsin(x) \Big|_{-1}^1$
9. $\arcsin($