Compare commits
No commits in common. "61f76cba3a073fc5f57c3992f87ea06f3324245f" and "f240cfb9dc274ac39085020ff7da68eaa208abff" have entirely different histories.
61f76cba3a
...
f240cfb9dc
@ -15,21 +15,3 @@ Given the above graph:
|
||||
A function is considered periodic if it repeats itself at even intervals, where each interval is a complete cycle, referred to as a *period*.
|
||||
|
||||
|
||||
# Sinusoidal Functions
|
||||
A function that has the same shape as a sine or cosine wave is known as a sinusoidal function.
|
||||
|
||||
There are 4 general functions:
|
||||
|
||||
| $$A * sin(B*x - C) + D$$ | $$ y = A * cos(B*x -c) + D$$ |
|
||||
| ----------------------------------------- | -------------------------------------- |
|
||||
| $$ y = A * sin(B(x - \frac{C}{B})) + D $$ | $$ y = A*cos(B(x - \frac{C}{B})) + D$$ |
|
||||
|
||||
|
||||
How to find the:
|
||||
- Amplitude: $|A|$
|
||||
- Period: $\frac{2\pi}{B}$
|
||||
- Phase shift: $\frac{C}{|B|}$
|
||||
- Vertical shift: $D$
|
||||
|
||||
|
||||
$$ y = A * \sin(B(x-\frac{C}{B})) $$
|
Loading…
x
Reference in New Issue
Block a user