vault backup: 2025-08-27 11:39:05
This commit is contained in:
@ -1,4 +1,4 @@
|
|||||||
SA derivative can be used to describe the rate of change at a single point, or the *instantaneous velocity*.
|
A derivative can be used to describe the rate of change at a single point, or the *instantaneous velocity*.
|
||||||
|
|
||||||
The formula used to calculate the average rate of change looks like this:
|
The formula used to calculate the average rate of change looks like this:
|
||||||
$$ \dfrac{f(b) - f(a)}{b - a} $$
|
$$ \dfrac{f(b) - f(a)}{b - a} $$
|
||||||
|
10
education/math/MATH1220 (calc II)/Integration by Parts.md
Normal file
10
education/math/MATH1220 (calc II)/Integration by Parts.md
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
The integration by parts formula is:
|
||||||
|
$$ \int udv = uv - \int vdu $$
|
||||||
|
|
||||||
|
## Deriving the Integration by Parts Formula
|
||||||
|
$$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
||||||
|
1. Integrating both sides, we get:
|
||||||
|
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
||||||
|
|
||||||
|
2. Therefore:
|
||||||
|
$$$$
|
Reference in New Issue
Block a user