vault backup: 2025-09-26 12:42:34
This commit is contained in:
@ -39,3 +39,12 @@ Remember, L'Hospital's rule states that:
|
|||||||
|
|
||||||
# Series
|
# Series
|
||||||
Vocabulary: A **series** is another name for a sum of numbers.
|
Vocabulary: A **series** is another name for a sum of numbers.
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
You can break a series into *partial sums*:
|
||||||
|
$$\sum_{n=1}^\infty a_n = a_1 + 1_2 + a_3 + ...$$
|
||||||
|
Given the above series, we can define the following:
|
||||||
|
- $S_1 = a_1 = \sum_{i=1}^\infty a_i$
|
||||||
|
- $S_2 = a_1 + a_2 = \sum_{i=1}^2 a_i$
|
||||||
|
- $S_n = a_1 + a_2 + ... = \sum_{i=1}^n a_i$
|
||||||
|
-
|
Reference in New Issue
Block a user