diff --git a/education/math/MATH1210 (calc 1)/Integrals.md b/education/math/MATH1210 (calc 1)/Integrals.md index ffb807f..b9c90cd 100644 --- a/education/math/MATH1210 (calc 1)/Integrals.md +++ b/education/math/MATH1210 (calc 1)/Integrals.md @@ -143,10 +143,18 @@ $$ \text{length of a curve} = \lim_{n \to \infty} \sum_{i=1}^{n}(\sqrt{(x_i - x_ This can also be described as: $$ \text{length of a curve} = \lim_{n \to \infty} \sum_{i=1}^{n}(\sqrt{(\Delta x)^2 +(\Delta y)^2}) $$ 2. Using the mean value theorem: -$$ \lim_{n \to \infty} \sum_{i = 1}^n)\sqrt{\Delta x^2 + (F(x_i) - F(x_{i-1}))i^2} $$ +$$ \lim_{n \to \infty} \sum_{i = 1}^n)\sqrt{\Delta x^2 + (f(x_i) - f(x_{i-1}))i^2} $$ $$ \lim_{n \to \infty} \sum_{i=1}^n \sqrt{\Delta x ^2 + (f'(x_{\hat{i}}))(x_i - x_{i-1})^2}$$ 3. Factoring out $\Delta x$ -$$ \lim_{n \to \infty} \sum_{i=1}^n \sqrt{x^2(1 + f'(\Delta x_{\hat{i}}))}$$ +$$ \lim_{n \to \infty} \sum_{i=1}^n \sqrt{\Delta x^2(1 + f'(x_{\hat{i}}))}$$ 4. Moving $\Delta x$ out of the root -$$ \lim_{n \to \infty} \sum_{i=1}^n \sqrt{x^2(1 + f'(\Delta x_{\hat{i}}))}$$ \ No newline at end of file +$$ \lim_{n \to \infty} \sum_{i=1}^n \sqrt{(1 + f'(x_{\hat{i}}))} \Delta x$$ +5. As an integral: +$$ L =\int_a^b \sqrt{1 + f'(x)^2} dx$$ +## Examples +> Find the length of the curve $y = -\frac{5}{12}x + \frac{7}{12}$ from the point $(-1, 1)$ + +1. $L = \int_{-1}^8 \sqrt{1 + (-\frac{5}{12})^2} dx$ +2. $= \int_{-1}^8 \sqrt{1 + \frac{25}{144}} dx$ +3. = $\int_{-1}^8 \sqrt{\frac{169}{144}} \ No newline at end of file