From ef0ac61db54c1aa1171ffc96d14dc4ec44918da3 Mon Sep 17 00:00:00 2001 From: zleyyij <75810274+zleyyij@users.noreply.github.com> Date: Mon, 7 Oct 2024 13:53:49 -0600 Subject: [PATCH] vault backup: 2024-10-07 13:53:48 --- education/math/MATH1060 (trig)/Graphing.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index fbbcf91..229851c 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -150,4 +150,5 @@ Vertical shift: $1$ > Evaluate $\arccos{\frac{1}{2}}$ using the unit circle. Taking the inverse of the above function, we get this. Because the domain of $cos$ ranges from $0$ to $\pi$ inclusive, the answer is going to be in quadrant 1 or quadrant 2. -$$ cos(x) = \frac{1}{2} $$ \ No newline at end of file +$$ cos(a) = \frac{1}{2} $$ +When $x$ is equal to one half, the angle is equal to $\frac{\pi}{3}$. \ No newline at end of file