vault backup: 2025-08-27 11:44:05
This commit is contained in:
@ -5,6 +5,7 @@ $$ \int udv = uv - \int vdu $$
|
|||||||
$$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
$$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
||||||
1. Integrating both sides, we get:
|
1. Integrating both sides, we get:
|
||||||
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
$$\int \frac{d}{dx} (f(x)g(x))dx = \int [f'(x)g(x) + f(x)]$$
|
||||||
|
2. Through the distributive property of integrals,
|
||||||
2. Therefore:
|
$$ = \int f'(x)g(x)dx + \int f(x)g'(x)dx $$
|
||||||
$$$$
|
3. Therefore:
|
||||||
|
$$f(x)g(x) = \intf'(x)g(x)dx $$
|
Reference in New Issue
Block a user