vault backup: 2025-10-06 12:34:06
This commit is contained in:
@@ -42,7 +42,7 @@ Vocabulary: A **series** is another name for a sum of numbers.
|
|||||||
|
|
||||||
## The Limit Test
|
## The Limit Test
|
||||||
You can break a series into *partial sums*:
|
You can break a series into *partial sums*:
|
||||||
$$\sum_{n=1}^\infty a_n = a_1 + 1_2 + a_3 + ...$$
|
$$\sum_{n=1}^\infty a_n = a_1 + a_2 + a_3 + ...$$
|
||||||
Given the above series, we can define the following:
|
Given the above series, we can define the following:
|
||||||
- $S_1 = a_1 = \sum_{i=1}^\infty a_i$
|
- $S_1 = a_1 = \sum_{i=1}^\infty a_i$
|
||||||
- $S_2 = a_1 + a_2 = \sum_{i=1}^2 a_i$
|
- $S_2 = a_1 + a_2 = \sum_{i=1}^2 a_i$
|
||||||
@@ -105,5 +105,11 @@ A sequence $a_n$ *converges absolutely* if $\sum |a_n|$ converges
|
|||||||
Then if the *series converges* absolutely then the sum converges.
|
Then if the *series converges* absolutely then the sum converges.
|
||||||
|
|
||||||
## Examples
|
## Examples
|
||||||
|
> Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n^2}$ conditionally converge, absolutely converge, or diverge?
|
||||||
|
1. $\sum_{n=1}^\infty|\frac{(-1)^n}{n^2}| = \sum_{n=1}^\infty \frac{1}{n^2}$
|
||||||
|
2. We know that $\sum_{n=1}^\infty \frac{1}{n^2}$ converges by the p test, so the series absolutely converges.
|
||||||
|
|
||||||
> Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n+5}$ conditionally converge, absolutely converge, or diverge?
|
> Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n+5}$ conditionally converge, absolutely converge, or diverge?
|
||||||
1. $\sum_{n=1}^\infty|\frac{(-1)^n}{n+5}| = \sum_{n=1}^\infty \frac{1}{n+5}$
|
1. Consider $\sum_{n=1}^\infty|\frac{(-1)^n}{n+5}| = \sum_{n=1}^\infty \frac{1}{n+5}$.
|
||||||
|
2. The above series can be compared to $\frac{1}{n}$ with the limit comparison test.
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user