vault backup: 2025-03-06 09:54:22
This commit is contained in:
@ -98,4 +98,13 @@ To evaluate an indeterminate product ($0 * \infty$), use algebra to convert the
|
||||
|
||||
$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$
|
||||
# Indeterminate form $(\infty - \infty)$:
|
||||
If the $\lim_{x \to a}f(x) = \infty$ and $\lim_{x \to a} (g(x)) = \infty$ , then $\lim_{x \to a}(f(x) - g(x))$ may or may not exist.
|
||||
If the $\lim_{x \to a}f(x) = \infty$ and $\lim_{x \to a} (g(x)) = \infty$ , then $\lim_{x \to a}(f(x) - g(x))$ may or may not exist.
|
||||
|
||||
# Indeterminate Powers
|
||||
When considering the $\lim_{x \to a} f(x)^{g(x)}$, the following are indeterminate:
|
||||
- $0^0$
|
||||
- $\infty^0$
|
||||
- $1^\infty$
|
||||
|
||||
1. $lim_{x \to 0^+} x
|
||||
|
||||
|
Reference in New Issue
Block a user