From dc7ab6252279412aa7466d8764c320ab92712510 Mon Sep 17 00:00:00 2001 From: zleyyij <75810274+zleyyij@users.noreply.github.com> Date: Wed, 2 Oct 2024 11:07:50 -0600 Subject: [PATCH] vault backup: 2024-10-02 11:07:50 --- education/math/MATH1060 (trig)/Graphing.md | 8 ++++++++ .../math/MATH1060 (trig)/assets/graphcsc.jpg | Bin 0 -> 13896 bytes 2 files changed, 8 insertions(+) create mode 100644 education/math/MATH1060 (trig)/assets/graphcsc.jpg diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index e5803fd..7d7a4e1 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -88,7 +88,15 @@ $A$, $B$, $C$, and $D$ will have similar meanings to the secant functions as the # Cosecant $$ y = \csc(x) $$ +![Graph of cosecant](assets/graphsec.jpg) +$$ \csc(x) = \frac{1}{\sin(x)} $$ + +Because cosecant is the reciprocal of sine, when $\sin{x} = 0$, then cosecant is undefined. $|\sin$| is never *greater than* 1, so secant is never *less than* 1 in absolute value. When the graph of cosine crosses the x axis, an asymptote for a matching graph of secant will appear there. + +The general form of secant is: +$$ y = A\sec(B{x} - C) + D $$ +$A$, $B$, $C$, and $D$ will have similar meanings to the secant functions as they did to the sine and cosine functions. # Examples > Given $-2\tan(\pi*x + \pi) - 1$ diff --git a/education/math/MATH1060 (trig)/assets/graphcsc.jpg b/education/math/MATH1060 (trig)/assets/graphcsc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..89419802fcbc1641defcef2959be2284514166fa GIT binary patch literal 13896 zcma*N2RK}7*FU^x492LVw=ftrdMA4Cy%U`vL<>SlMh!xAK@hzYEm0zRFNq!{MUN5* zf`}yi$H+O)InVQc*Y)jed#!tw-@Vq|cV?f@oi70-8Y=2400;~Kj_7~D`DXyGD1OPbS0f4B=`63Vj;6NY{ zYzPiEHVz&R`VSw9g9F7UfWh!#Fai<+%tb;#L`*_VL_kJHPEJNfPe(^b&-nKR!o|fU zBp{?FA)%(FfK$-^t@!`ToOc6oD98qshy{WJU^oa14m$4z-l5aM0d|){&y6$WFT}HUGHQi!s}AOnmPI}4~T*prmT#7Du-cgwf8Voo*hFV z%;x`vB;bQlP+;f(8wuMLJv7l5#oFp+Mg(~67y&e*7DHpzWl$KV^T`s1R`AGOP;hOX z1f~pN6nT7|064oDBY}mDZ(tbme)2(f6y3k_FyZByE0Ils4Sg=5I zq~jtm41?Rv z5lrqJIt@w~38vLRy(j2eL93t8I!upI3*AAt8!NhKl+NxV{*=hs>cHV1+6Ic7#n6aW zDVG62Ak$XwIDoD04gl1o<1<(>pGvE;3S;)r4TSaPjU0NM)T0|h&}m;B02x`J035`8 z4r&QAsIb7EC;%Rdr4WDu0VOzj0L%xp*Tx1ArI1?EYl9FMp~u-xMpBo8W(&K9v zHhLEHooEUGm`Q0w(O2gPpr;vZ5-;yU`iz|(bwMxHAT3p41el2%OVss3#+O zD0+njVS{_97o?meI9Uc)M_7+kS@s9KT|Mai4ULYk_5E^o$Tb-kek(R)4dbT#SZn56w2xN>kNB(Mfsz{&cg za{-=bDwgqeVP77g=%NjvrOo>4&S6cA^o@>3pFl*g|V&76b z{I91^*rF(>4W3>n(=e=9RE)9mT`uFKgf(xLd1d=z%PSgW8lrRkO(gLq6`+N`{4_BB z5X5AXETUK-MIQZ{AW?)#;FI19_aA=l?*d6H5b8Cz(c%95 z`l3g`p}BQ=NVqQ7qgVU^hv+JO1+o5C`gL^6T>WuCo#%{~5M4?%kW8Tr&T`V}1nY5E z$&EN_nTNhJTRf7~k!pA&K%dZmkeXVIuP}iU5u;B(+q!3P66Nm1H<(_Ra?j{}22b@> zRb@^N4a&%pf#0!{so6i0b8Sj>1z+Skc}NW}1g159yXv}OGBsM|6X-t*qc9ZyQ?4$} zwEW9#-Y0?cAH~1DuKBgWvO8S=N2O+%vNbjOPlQVsA6m^X;=d(`7BRqXr5Wp2)T=ug z9X5-KjTA^DmK0cJ?ww8C)A_Zg5m(EK%;!^s)*Ie)bW*2Y;E1?wVbEBNr{In5=oLI$ z=k_r?XGYiKTN!sk3qOyi!x~9dKF8oR*&#owGdf4qMiE(xF$5Acaut)wt?yh|&__kz zpr!iwfi3Qrz39`J)`Iev*Y=r3N-~v3Ge&~F9=g}nkpIMM^d)@GdJfQrDqFr}y1wPZ zjud5CP2?}gr*kx>&=KbAXf=1G!O3L`C;#lqBE)@_hyRGdZFyq#iDCg*WKrU`-FGA& z@I-jcQp*N?_T>t46{5-zZnphxOmLh~+?+CvwX1LnGkt!p-FIRQ8JJi6jZc`INj}hj zw<>86ddD`KL?$6|gix?&Qs@RQqDTVmMs%n6QeCHWPfAd{y?kA?epUZ`beP zP(QAG7?~)tBGa1?H_z5zD@d1i7HPAP6rI5|XH3GKyC16Z_&PT0Ecr+B3``|y!7iTZ?Kz-e9gpSFj_uxbfAZF+jLPL#jf)cX zZ%&@%o5g#0dfbEE$w{;pQm2TpyGP9tu^m}BZyoZb1CTP3lUqd$><(TsCvX^=CRwoQ#r8RtHD z>{T5n?Hzj?78K~P!v0|%@d&l6)UX~s5*fOf#~H~{jNjt3O6aiYcC2K%H>_T2puL6I zB;@gWtu!z8@y>?_4RRJ-Ovx(0-a>_#G2@g!J9xlcZ(TNJJU(10 zm9x)F5hBwNq3Putr!Up#)C_~fdHfBS8ogF3BuZ`lq%cn=oh93_g;${V(HQR7%bvzf z^67&CnULLN=qAy$ri@u!v)Pr_%Q$EamUA=f9Ujq*AG_ddYY9R>W-a4ij|$&-zr1i8 zW`Ry`0Z)Mi2C(wLdf{}RL?E`rl>({cRQ##=kJ%x2>ee9HK)qqe$^H6Q)f3oN8Hz4 z!b!ZO(ld;11i8v$TC6UqjzVE#Jb1C~nl6HWLGvhf$&UJTI%LB39LP-knY)U$&N3~M zo8kfj`02wUi#XZIpY%O!H?w_uFUE%F`qY;voXkA!30d7=Ebgy*GR1~zjcRkuv@_j9 ztxFE!dC4Wk=jZ)sy5s*;H@q-xhbrc~rS1pQX>K{8)|Vdwtu&>jy03ef8+!yleqgsi znA)>7RCRMhq%mY|7k5gj5i2!r^!?+K%}wI`=*Ou!gI4a+7MPAWWPPD@l<=kYqwWW3 z@MM3$m1|5tv$q$L6VL61L41W)gPadXCY6WJA$6^Dv< zT7H%>k1D+dW^VZ62l{+n-&eHaejAYxouN+n;$Qk(Y?9S~xmsUkFCf)EUcB`Drv?N1 z`lRe6=8>cSd^x_42J7fbRN4P&>Cj7=pB>k%_~_dIS4|D~zwoo!Jm4cfdtrm(B+&jn z%5vgy8N~B#d)mGFj>VFd4!(82FLQU=V*FOc4&QI4DR7F1+eY9SJVDXF$$B43avGRG z1!vPSYF!l$jF5Z>p4S-s*{Anzhte(YzBl5jb=~2?93H|+>VcL&dxka)O2hNmNQbP_ z557~YMgrJMvvR>TYM3XBAVs#g*Dh9uK&MZ$Bn#g9O$YajZJd(7sW`t4(&gYS?p)CB z{y21&7Lx9t@>4{%x#S#pC2PZ3q~A#IJ)_{KqC{8`S;5)X!-HQc7a#&p%sbs{ItWTT zwv@~`o)jaa&6klx-0!_)-$YAB_K57qjmKTfJ;@2mJ%l+h>ozlm3 zS6g>P7m^dx%c5BJZRQ=NwST1(c}OgtglJGIZg!cKnn`vY`55#(a%wRo7giC7sx+Rs zw*OskKO~^)kZ-1)|IC-WS5(aTI%0wHWm4RpI_V7qJgOJ-YEq=4+&$UD2F z*t9Zp9TWM1*@B-t;@ZR&A9Mv(`$KM#5jMaVJzm58-qW807hA+Sb~(P47Ggmo!T7Px zuC&#|ev?$fC#Ba}%@p~E(~7}N{-T=NlhY9hc@|a^%}_2i)7CodyQ-|UztmiPQABkw z##&Fc#+I?5@ec~et-GVDeqE1$`Tdo~+o7SdqH=4CCZqJ3=-D)Usgc`hwlawAgISaN z0=0Rv>#&h?fqohVPY*pA17*F=kO!6}_Sw@$ z;;`blJfsI(UuW_{a=~JJwn5Q~1k7&+BKmN;(DOT2>PSU=$`{1Xf&HuFKX>d8&X#f0n3#Xc5MBl~Q&(vH;4D3jWJ z^#XU;^J0G*^vO}tTME^yr4t6HmuU`Ci_mXmZ(XHKq(7g zl%{(4?NFJ_F>Z9uuID9#iFqh8t*5*=}~R^Aet04x!{lVu_6C<U00F7hJaW|8rJxy&2`hHq`#J|4=#$JfTmJ zEVg3Hbh8$-FYAP=>p|1vhN4~_cJHEh5E9B2TUaeR(aUP|Yg6_w~E17M5=C|?5lgC z>Xcqs{KAv>N8Rv-RAU^zNjcr`iFYVoU;B42WD(^n$2JDHMmTI=Q;uW}@~L>$N1Xok z_U`6dV{wnPkmCToSpMfV{WjTYR(FZdWTg$+7H)Ql7w1@u&%)S7#$5N z;rdhjHvN7ZbADY@@z{PPH;&i#L55#T7q}lh5l}>Nvge(;pwG^?Hk^sJ?IoaiOZo1v zpY?yiI(($!FhW@97RU3GOVv%3JFf9wvE_=)duEv(X1{yI*JnHv4E4S%WFtcG(m(bo zv>LxU2aMdSVkLv;Zc&J4sBSjS=y0y@V0p`Wgk_bg>2;aqzLfcxalN%= zo(bJv&n;|R4RF)ijWWbQU7qmeoIN4Um6|C2xaRKBVh+QvM#1SxHB>1f*&bTe4>BWm zpOxBCG46>!G5QftW6NCbMKh&hWW|JUGBKl>@%4*}l~YG7ysrA7HB-;@)%xp?q}t0Y zO7&@g?=yB@1LbXQYr(hh7h~ zQjFSS|9nz9ZY1Dd#qJ^JaV%>IADG3r^o#V``*83l6ITE3LbPEblYqM3r< zyV8%Rs$oljL_3?AxI5BScba{;8ucQRi^cxJHEVR54t_J(3;S*ay*2+r(an5W#!yuH z;njKBbs+^ zjHgP{5;ZvwsT(W+MWjTcsAq5M^kj`Yh@F{yFXO$5sP#XvDC#0B8{e>ez9H68Q)nD# zAnE4Lvqq~K#OfWfN{=0-Ge^@nq)!JuSw;|0lRh@>Fi0aibE$qId??~GugceYwK2qk z_#B{mIBgw;9bNK$0PyU@YGI?{U}}N<^710OE88}It?_hyme-UgUYf}*SJUKJxa0|f zJ*65iaUSnJBsZJJFEj=5)Kd3X+t%*ex$K1OkNn(FsOay4G1x-aQZp$JZ|P|@}IBr?(y z#k~}Z#>!fFbYu7ZiNh>uJ>%UQob{)5LeQGTJ<8V#f+?DlraqD1+9|s8B&%tYoFcq( zQfulQj1m+!ksLr^xAQk=A>&@Z2xk^K)B;=_|1gJjt5#O~pk zL^>Ce72L5%xpniCc&6{+)Ru*nRi;Zg+`8xRncb;r?eD8|_tHMgY8*2b-zA=W%9TvA z8?owk^{h)|y>09NHmZ|&cJkxde|f%ofU*9nbiI_P#WO`RnjNXP?7}x~#>j1{rJh%k<;BZ(vAjv6HJ;Urw~_ny_%nCnIu~&l zAV0TH)@vH!BWy@Ojw`o}2=1qKsCdhyz{-wH>ByvwpEq73eLkp{v8T)9ecMCgN6o26 zBJ1du0ywlk??XWg423LG=1aFbIBazx9dD^vb$`KSZ`>(NfD;fkGpP6QR)&Fk9RF62 zT!c6-lZYj`&rIHRf}^sT=%j*8-IOuGwil|9=cXD?(Q?i+a|K9+iL%zuT=OhQ(bNa>$=J(ZT%%tkzzv% zUU%)h7e(@pc6VrYpjG-TbzEc(-JL`-eVnNiZq%EHN!iDh=Rj=O-lJIj;9iB;`oXX^ ztCn@TSQT7FZ#5?IEbZM56eYJ|a>IzBokzT<;hHpm*@;W7VLln8$W8Q#;pYrn{c*Sa zMu5Vn1%I%*gua~ddzxtK%Xpy_C$jzSiAokXunrcxW6A@`4x=9#p^{g90yKTCUha(x zNWB6dUW=5Iwgs-)0WG$Lj;&r|Y?eD)7Kz!oT9 zB3bjn-;|=O&A?;RN*!{-@9or)P-S@V;NHIP6`obGjZY4TcCUbv4?_N`hBnBwU>&QS z*~noH2QGiqK3k#q)7uk%T|qo&j0}qTJtd931juY9h)4+yQYm}5A#M~_KSKH@-*tKO zVZ`BqQ}fHkte6(VqNjBpztUPkIZp=z_Wa9%0Vc{VHP_h`XdCHov`ND!%#h8~OP z+Y;%0xJhhQ>Q+dld>~m|ezKqzHQL)d7R-Qu^zcA`>J>=Z&$`|Gi-kv^72{8;ig9yUMF+=DS8@z}IEDTk@{_}Lb1Q_OBRftZ`+ zIkuFr@Yr!dSW}wpiabL7>fij$u%1?^q4yZFsV?}8d9a!(Bow@$BH3YpsR=Qb2PoT3SK68^+E?XB0k2_BJLI&ti!EuIHGW z>n>Kx@5HI&v2>5%!1M*HR3Dxjy$zKN`|=I0IhzJ!yM77`H_8f!a$EPGe7)G-sIZdf za8n*kyRTgUIx_Kw{E@$(5Z<7wNxJ zT$TLvjm5_Agj3^0_GR>IM*HxXyL<#F)Q)yarQuY*& zw6WQ;}8 zgbnxR{fgHKT|daoJOt}fRFd5D?@*)C=fI7V?%oJL|}{&7#E5_QDiQK3V+jOr3F5rjmc1GogdOic}m4mj+ev8f|2 zQn;+>vQo6cMG?4!LR|`hi@Fm31qHdNbz|;#|@PB28jw%cfaVbFy z(HW7V>%zM*`0GZ5;Q^OT@s|XN0ubnLe*P|^859&ie?>%!@%sBMjO6fjo|zEwk|9di z4uRe>`M!C<8Ft{?1wv$U5n*Jb-8WExSqCCPu6*8Z*5QOI%Zo}qFrG|(goXtLIV{wO zOng0Kf0qJpi96jF7epAQW#_ihw$HCc!9S8_*6w%oW<4+_wtJU)30g{Hx%?a!I1QGA zw}3x}MteiqhT^W`sCTMq0)$=imhx2(Nd*wHSR@S!zMvVzvraj!U=Au1_n8%Pf!kDj z0;JyVSHdfDPH>krzM<;I7P@)I>(x)F6Ln{)J)^piQaJR=^2ogL=>lmz@CM`_4s&>1 z6qY~lg545(@U(EH7IlsboFn2JBJ&r4e9{vuyJGUSTEyC>Z7N zE1fP6=BT?bA1y@A@~CXcR%A+%T#GI5TAezQ4{gEG2OQ6l)L3$I zMn*>DBxjUFD3!{2r7P- z@EBHi&Rca4tXJ2wOB{G!C)$3NCg?US_M_tdT_N~6E!|uuQ-a|h7`(jqlIwSgIFw;v zNAfebZzV~hWj)@~3KOD|fW3*TJ~cZOWdCc@000xAJj$T+lGFe#%%skEYx} z5<;p!g1$I%Ddy$i6l&m+#&sGFr9L@WK{R{VqsH!f;&el^Qx#3fQW>cqfyNjmZeGLN)DiMm`JDFHo*qX10qfKCUJdQqiBB zoT?;$G#(fRF>V#(y9LsgD~6ZYy6>9$+V+jxh?i%;o8-tPD(V6dgPW)LYG%9KM+@3p zsyTFTkP^?Y#cBQcxN7lcu-u%4zh=$oNB3E|f=^iIa|R#MF2(4uXiL3}a`nC?{f>vd zS8W4TP~?=al?lfaP!Z9g)^6Z(wq>qlhvcmhS0l(aKj&S zPBE|D&r--$teqlrZr{=R&`q#~(14Ls_k`L?<5cmLL74I^{0=GV?yq>-wM~2?T)0;i z-4gx0NNTNbz$~RSr*gYNN}zVZW0R8Y$V{GGGf3cr+R`{6rE=AhrIS8-f(Qy-1c*ox z(FRuFJP;Q(@Dxw4Vk((i3ncI?D`)>;1iY zCY%E9rn5==Y+CgeS1{p&$Eh`lg{v*tT*r>o^%Ho|`wzz^?~n|NJFk{Td+!IIKmMu@?zem^f076o^7lWg&i#7p*bik2tXsUG0y2 z96TlM!#|f`ALTv}FC&e)8J@8$HOXV>_F?lrlc-{nUQ|~En1Hf20iOgvn4)4Zepp7B zA}u4lx?9nVUE(pAa)a?b>DySvu-&(QV_e-z#tNG++KqdOV-X}n(t+dr`xMFVEPMm< z0RY7fQoIUdBru_c*0`h{daq2K=n0t)Q`hsSekO6jpB!>>Ys~!=8$De$;8OnXv%<}C zzXPjVNsGhQyR*qIha_*`iXp_qa}?_`%@#fg3!&)!Vlef z@`tvnKXk~u)WLHRGzT099oT1^G?sc_4CnA{J?Ho8Zq_e5vWxusg$VCeQfCeW!>hF> z$G+7&xC(qSJyh2qpx*h^cdhCM61LkcTah_?)kVnuO#OARU1-EuTnYXiS7nQXazu{Z zDEq^kzO`72#x7J=`U;VWZ>Rm(O@$bUl{9W-3s7#UHBMV8&0&;4V2D(M=a7S0)b*&Z*+`08<$5w>;#Cb($E9O_9MU*) zX=Ym`eyDGd>y@%354<6EsWM%lcgj_E+F^*6HdV%Ykkp*k9=x-6OzVkV!FpWMCTvEV zCDOpvj~E)!*u$y`~^y0G26>VMx+{qgc?HYK#i>`w!ZR)V<3{b-pBQ`Pt6ZVaimcN?M58~|+U&!jkE7~c^#Dn_Y_E`}@5P+NsDQbml-HfBtk7Ez9D9~V6zJH3 zafnV0yE(Wy9OOzUwaZNMY?ldW=xcGy&Vl;!#wi?j3o?k(Hz0F`Sy{!Xy?6EHJENgj z^>}{vyd}k^p0E2jk~ ztgrrM?jN!54FuMOFTi)nnRwWLLqJ8-x$;l>yOq1<%nq;<=9JB8DMluA;|7`Omu5o+ zssVmf6Q#v9FC4O11%z}mJ9AHvw}8|r6cuGNoB~PQp*uDG0rRQx8R%1zoWG8cVce5a z@Xz*H#B*$Gms^KA$@u7RiqRPH{E9V@IVlztDi1cAxpLKs-;%OB?4x?^YkR|2&H=b2 zsU$w=;|rIak{2j|LK!~o@=G;8)wA_9VO*_V*lVX^Gm?T7wO+V7Rsv-w}v&d_va z8>(*0b3W$!Ok@lVR#K1fcj*!AMwBeg7e!e~1!d`^+{K}^!cr=1@Ay?l<;%-u90AH%(YF%Qfh%F+ z)Q2~sBg_KKpXaXmg>G!f&nD&aqb!66PK{HV%~X=^WCg>%@;`oXU9r~As3)*W>7fmU zeY;zo6M*~WSqzd)In)3_DP(9HUBzaG27kqZQ^pb))!ik`mc>Ls{%(?GgLNjPfM!^X zaw{tf3$pgI?f#aV|7*2x^0Hhm0ba?&Z3@EoalCNKQDEZ|nGA}0Cb}E!Tp6|4lqU|X zk1EoZjS5K3u)G;5XmiL#cbg7ogQ|RCHYv{n7OfZSGu)uhJ9P|*ET{Bv+fq2Y$W)kw zek!r`e{;ia5fj&05fEPfYU?AN#I;Nu@DpTRt4`a|jh3V%Se5xTh@-3iu`jjqw!?h*|YXdQ0 p!}UYK*Wd5%B-0(CYr@f2MZCZG-XX@kO