vault backup: 2025-09-03 12:35:04
This commit is contained in:
@ -1,6 +1,11 @@
|
||||
The integration by parts formula is:
|
||||
$$ \int udv = uv - \int vdu $$
|
||||
|
||||
Broadly speaking, integration by parts is done by:
|
||||
1. Pick a part of integral to be $u$.
|
||||
2. The rest of the integral will be $dv$,
|
||||
3. Compute the derivative of $u$, $du$.
|
||||
4. Compute the antiderivative of $dv$
|
||||
5. Substitute those values in to the integration by parts formula.
|
||||
## Deriving the Integration by Parts Formula
|
||||
$$ \frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) $$
|
||||
1. Integrating both sides, we get:
|
||||
@ -32,4 +37,6 @@ $$\int xe^{2x}dx$$
|
||||
1. Substituting $w$ and $dw$ into the integral:
|
||||
$$ \int \frac{1}{2}e^w \frac{1}{2}dw $$
|
||||
2. This gives an integral that can be computed naively
|
||||
$$ \int\frac{1}{2}e^{w} $$
|
||||
$$ \int\frac{1}{2}e^{w}\frac{1}{2}dw = \frac{1}{4}\int e^w dw= \frac{1}{4}e^{2x} $$
|
||||
4. Combining everything together, we get:
|
||||
$$ \int xe^{2x}dx = (\frac{1}{2}e^{2x})(x)- (\frac{1}{4}e^2x) + C$$
|
Reference in New Issue
Block a user