vault backup: 2025-09-29 12:35:33
This commit is contained in:
@@ -52,3 +52,10 @@ Given the above series, we can define the following:
|
||||
and say that the sum converges to $L$.
|
||||
|
||||
## Examples
|
||||
> Prove that $\sum_{n = 1}^\infty a_n = L$
|
||||
- $S_1 = \frac{1}{2}$
|
||||
- $S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$
|
||||
- $S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$
|
||||
- $S_n = \frac{2^n - 1}{2^n}$
|
||||
So:
|
||||
$$ \sum_{n=1}^\infty \frac{1}{2^n} = \lim_{n \to \infty}S_n = \lim_{n \to \infty} (1 - \frac{}{}$$
|
Reference in New Issue
Block a user