vault backup: 2025-03-06 09:39:22
This commit is contained in:
parent
f7be56d581
commit
cfda79dc6a
27
.obsidian/plugins/obsidian-git/data.json
vendored
27
.obsidian/plugins/obsidian-git/data.json
vendored
@ -1,27 +0,0 @@
|
|||||||
{
|
|
||||||
"commitMessage": "vault backup: {{date}}",
|
|
||||||
"autoCommitMessage": "vault backup: {{date}}",
|
|
||||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
|
||||||
"autoSaveInterval": 5,
|
|
||||||
"autoPushInterval": 0,
|
|
||||||
"autoPullInterval": 5,
|
|
||||||
"autoPullOnBoot": true,
|
|
||||||
"disablePush": false,
|
|
||||||
"pullBeforePush": true,
|
|
||||||
"disablePopups": false,
|
|
||||||
"listChangedFilesInMessageBody": false,
|
|
||||||
"showStatusBar": true,
|
|
||||||
"updateSubmodules": false,
|
|
||||||
"syncMethod": "merge",
|
|
||||||
"customMessageOnAutoBackup": false,
|
|
||||||
"autoBackupAfterFileChange": false,
|
|
||||||
"treeStructure": false,
|
|
||||||
"refreshSourceControl": true,
|
|
||||||
"basePath": "",
|
|
||||||
"differentIntervalCommitAndPush": false,
|
|
||||||
"changedFilesInStatusBar": false,
|
|
||||||
"showedMobileNotice": true,
|
|
||||||
"refreshSourceControlTimer": 7000,
|
|
||||||
"showBranchStatusBar": true,
|
|
||||||
"setLastSaveToLastCommit": false
|
|
||||||
}
|
|
@ -92,4 +92,8 @@ L'Hospital's rule **cannot** be used in any other circumstance.
|
|||||||
2. $= \lim_{x \ to 0}\dfrac{7^x \ln(7) -5^x(\ln(5)}{2}$
|
2. $= \lim_{x \ to 0}\dfrac{7^x \ln(7) -5^x(\ln(5)}{2}$
|
||||||
3. $= \dfrac{\ln(7) - \ln(5)}{2}$
|
3. $= \dfrac{\ln(7) - \ln(5)}{2}$
|
||||||
# Indeterminate form $(0 * \infty)$
|
# Indeterminate form $(0 * \infty)$
|
||||||
If the $\lim_{x \to a}f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ then $\lim_{x \to a}(f(x) * g(x)$
|
If the $\lim_{x \to a}f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$ then $\lim_{x \to a}(f(x) * g(x)$ may or may not exist.
|
||||||
|
|
||||||
|
To evaluate an indeterminate product ($0 * \infty$), use algebra to convert the product to an equivalent quotient and then use L'Hopsital's Rule.
|
||||||
|
|
||||||
|
$$ \lim_{x \to 0^+} x\ln(x) = \lim_{x \to 0^+}\dfrac{\ln x}{\dfrac{1}{x}} = \\lim_{x \to 0^+} \dfrac{1/x}{-1/(x^2)} = \lim_{x \to 0^+} -x = 0 $$
|
Loading…
x
Reference in New Issue
Block a user