vault backup: 2025-02-16 18:47:21

This commit is contained in:
arc 2025-02-16 18:47:21 -07:00
parent acf45de160
commit c2d96ec2e5
2 changed files with 12 additions and 34 deletions

View File

@ -1,27 +0,0 @@
{
"commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 5,
"autoPushInterval": 0,
"autoPullInterval": 5,
"autoPullOnBoot": true,
"disablePush": false,
"pullBeforePush": true,
"disablePopups": false,
"listChangedFilesInMessageBody": false,
"showStatusBar": true,
"updateSubmodules": false,
"syncMethod": "merge",
"customMessageOnAutoBackup": false,
"autoBackupAfterFileChange": false,
"treeStructure": false,
"refreshSourceControl": true,
"basePath": "",
"differentIntervalCommitAndPush": false,
"changedFilesInStatusBar": false,
"showedMobileNotice": true,
"refreshSourceControlTimer": 7000,
"showBranchStatusBar": true,
"setLastSaveToLastCommit": false
}

View File

@ -115,8 +115,13 @@ $$ \dfrac{d}{dx} f(g(x)) = f'(g(x))*g'(x) $$
Using the chain rule, the above function might be described as $f(g(x))$, where $f(x) = x^4$, and $g(x) = x^2 + 3)$. Using the chain rule, the above function might be described as $f(g(x))$, where $f(x) = x^4$, and $g(x) = x^2 + 3)$.
1. First find the derivative of the outside function function ($f(x) = x^4$): 1. First find the derivative of the outside function function ($f(x) = x^4$):
$$ \dfrac{d}{dx} (x^2 +3)^4 = 4(g(x))^3 $$ $$ \dfrac{d}{dx} (x^2 +3)^4 = 4(g(x))^3 ...$$
2. 2. Multiply that by the derivative of the inside function, $g(x)$, or $x^2 + 3$.
$$ \dfrac{d}{dx} (x^2 + 3)^4 = 4(x^2 + 3)^3 * (2x)$$
> Apply the chain rule to $x^4$
If we treat the above as a function along the lines of $f(x) = (x)^4$, and $g(x) = x$, then the chain rule can be used like so:
$$ 4(x)^3 * x $$
# Trig Functions # Trig Functions
$$ \lim_{x \to 0} \dfrac{\sin x}{x} = 1 $$ $$ \lim_{x \to 0} \dfrac{\sin x}{x} = 1 $$
$$ \lim_{x \to 0} \dfrac{\cos x - 1}{x} = 0 $$ $$ \lim_{x \to 0} \dfrac{\cos x - 1}{x} = 0 $$
@ -149,8 +154,8 @@ $$ \dfrac{d}{dx} \cot x = -\csc^2 x $$
> Differentiate $f(x) = 4\sqrt[3]{x} - \dfrac{1}{x^6}$ > Differentiate $f(x) = 4\sqrt[3]{x} - \dfrac{1}{x^6}$
3. $f(x) = 4\sqrt[3]{x} = \dfrac{1}{x^6}$ 2. $f(x) = 4\sqrt[3]{x} = \dfrac{1}{x^6}$
4. $= 4x^\frac{1}{3} - x^{-6}$ 3. $= 4x^\frac{1}{3} - x^{-6}$
5. $f'(x) = \dfrac{1}{3} * 4x^{-\frac{2}{3}} -(-6)(x^{-6-1})$ 4. $f'(x) = \dfrac{1}{3} * 4x^{-\frac{2}{3}} -(-6)(x^{-6-1})$
6. $= 4x^{-2-\frac{2}{3}} + 6x^{-7}$ 5. $= 4x^{-2-\frac{2}{3}} + 6x^{-7}$
7. $= \dfrac{4}{3\sqrt[3]{x^2}} + \dfrac{6}{x^7}$ 6. $= \dfrac{4}{3\sqrt[3]{x^2}} + \dfrac{6}{x^7}$