vault backup: 2025-10-01 12:39:00
This commit is contained in:
@@ -82,4 +82,7 @@ $$ = \sum_{n=1}^\infty 35*(\frac{1}{7})^n*2^{n-1}$$
|
||||
2. Pull a $7$ out of the bottom, making use of the fact that $(\frac{1}{7})^n = \frac{1}{7}(\frac{1}{7})^{n-1}$
|
||||
$$ = \sum_{n=1}^\infty \frac{35}{7}(\frac{1}{7})^{n-1}* 2^{n-1} = \sum_{n = 1}^\infty \frac{35}{7}(\frac{2}{7})^{n-1} $$
|
||||
3. This is now of the form $\sum_{n=1}^\infty ar^{n-1}$, so:
|
||||
$$\sum_{n=1}^{\infty}35(7^{-n} * 2^{n-1}) = \dfrac{\frac{35}{7}}{1}$$
|
||||
$$\sum_{n=1}^{\infty}35(7^{-n} * 2^{n-1}) = \dfrac{\frac{35}{7}}{1-\frac{2}{7}}$$
|
||||
|
||||
# Divergence Test
|
||||
If $\lim_{n \to \infty} a_n \ne 0$ then $\sum_{a}
|
Reference in New Issue
Block a user