vault backup: 2024-09-23 11:36:45

This commit is contained in:
zleyyij 2024-09-23 11:36:45 -06:00
parent 487b115a15
commit b54005308c

View File

@ -42,7 +42,7 @@ $$ sin^2\theta $$
### Finding all values using identities ### Finding all values using identities
If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the other 5 trig functions: If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the other 5 trig functions:
Using the trig identity $1 + tan^2\theta = cot^2\theta$, we can do this: 1. To find $tan\theta$, we can use the trig identity $1 + tan^2\theta = sec^2\theta$:
$$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$ $$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$
Shuffling things around, we get this: Shuffling things around, we get this:
$$ tan^2\theta = \frac{625}{49} - 1 $$ $$ tan^2\theta = \frac{625}{49} - 1 $$
@ -54,3 +54,5 @@ You can get rid of the exponent:
$$ \sqrt{\frac{576}{49}} = tan\theta $$ $$ \sqrt{\frac{576}{49}} = tan\theta $$
$\sqrt{576} = 24$ and $\sqrt{49} = 7$, so: $\sqrt{576} = 24$ and $\sqrt{49} = 7$, so:
$$ tan\theta = \frac{24}{7} $$ $$ tan\theta = \frac{24}{7} $$
2. To find $cos\theta$, because $sec$ is the inverse of $cos$, we can use the identity $sec\theta = \frac{1}{cos\theta}$:
So $cos\theta = -\frac{7}{25}$.