vault backup: 2024-09-23 11:36:45
This commit is contained in:
parent
487b115a15
commit
b54005308c
@ -42,7 +42,7 @@ $$ sin^2\theta $$
|
|||||||
### Finding all values using identities
|
### Finding all values using identities
|
||||||
If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the other 5 trig functions:
|
If $sec\theta = -\frac{25}{7}$ and $0 < \theta < \pi$, find the values of the other 5 trig functions:
|
||||||
|
|
||||||
Using the trig identity $1 + tan^2\theta = cot^2\theta$, we can do this:
|
1. To find $tan\theta$, we can use the trig identity $1 + tan^2\theta = sec^2\theta$:
|
||||||
$$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$
|
$$ 1 + tan^2\theta = (-\frac{25}{7})^2 $$
|
||||||
Shuffling things around, we get this:
|
Shuffling things around, we get this:
|
||||||
$$ tan^2\theta = \frac{625}{49} - 1 $$
|
$$ tan^2\theta = \frac{625}{49} - 1 $$
|
||||||
@ -54,3 +54,5 @@ You can get rid of the exponent:
|
|||||||
$$ \sqrt{\frac{576}{49}} = tan\theta $$
|
$$ \sqrt{\frac{576}{49}} = tan\theta $$
|
||||||
$\sqrt{576} = 24$ and $\sqrt{49} = 7$, so:
|
$\sqrt{576} = 24$ and $\sqrt{49} = 7$, so:
|
||||||
$$ tan\theta = \frac{24}{7} $$
|
$$ tan\theta = \frac{24}{7} $$
|
||||||
|
2. To find $cos\theta$, because $sec$ is the inverse of $cos$, we can use the identity $sec\theta = \frac{1}{cos\theta}$:
|
||||||
|
So $cos\theta = -\frac{7}{25}$.
|
Loading…
Reference in New Issue
Block a user