diff --git a/education/math/MATH1060 (trig)/Graphing.md b/education/math/MATH1060 (trig)/Graphing.md index de96bfe..2d5b086 100644 --- a/education/math/MATH1060 (trig)/Graphing.md +++ b/education/math/MATH1060 (trig)/Graphing.md @@ -78,9 +78,9 @@ Given the form $y = A\tan(Bx - C) + D$ (the same applies for $\cot$) # Secant $$ y = \sec{x} $$ ![Graph of secant](assets/graphsec.jpg) -The reference graph of secant has has a period of $2\pi$, -$$ sec(x) = \frac{1}{\cos{x}} $$ +$$ sec(x) = \frac{1}{\cos{x}} $$ +Because secant is the reciprocal of cosine, when $\cos{x} = 0$, then secant is undefined. $ # Examples > Given $-2\tan(\pi*x + \pi) - 1$