vault backup: 2024-09-18 12:02:12
This commit is contained in:
parent
27b91d5928
commit
ae2df8eb0e
18
education/math/MATH1060 (trig)/Identities.md
Normal file
18
education/math/MATH1060 (trig)/Identities.md
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
# Trigonometric Identities
|
||||||
|
|
||||||
|
All of the following only apply when the denominator is not equal to zero.
|
||||||
|
|
||||||
|
$$ tan \theta = \frac{y}{x} $$
|
||||||
|
Because the following are inverses of their counterparts, you only need to remember the equivalents for $sin$, $cos$, and $tan$, then just find the inverse by taking $1/v$.
|
||||||
|
|
||||||
|
| Identity | Inverse Identity |
|
||||||
|
| ------------------------------- | ------------------------------ |
|
||||||
|
| $$ sin\theta = y $$ | $$ csc\theta = \frac{1}{y} $$ |
|
||||||
|
| $$ cos\theta = x $$ | $$ sec \theta = \frac{1}{x} $$ |
|
||||||
|
| $$ tan\theta = \frac{sin\theta} | |
|
||||||
|
$$ cot \theta = \frac{x}{y} $$
|
||||||
|
$$ sec\theta = \frac{1}{cos\theta}$$
|
||||||
|
$$ csc\theta = \frac{1}{sin\theta}$$
|
||||||
|
# Pythagorean Identities
|
||||||
|
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.
|
||||||
|
$$ sin^2 \theta + cos^2 \theta = 1 $$
|
@ -26,19 +26,6 @@ Finding a reference angle:
|
|||||||
| 2 | $180\degree - \theta$ |
|
| 2 | $180\degree - \theta$ |
|
||||||
| 3 | $\theta - 180\degree$ |
|
| 3 | $\theta - 180\degree$ |
|
||||||
| 4 | $360\degree - \theta$ |
|
| 4 | $360\degree - \theta$ |
|
||||||
## Other Trigonometric Functions
|
|
||||||
All of the following only apply when the denominator is not equal to zero.
|
|
||||||
|
|
||||||
$$ tan \theta = \frac{y}{x} $$
|
|
||||||
Because the following are inverses of their counterparts, you only need to remember the equivalents for $sin$, $cos$, and $tan$, then just find the inverse by taking $1/v$.
|
|
||||||
$$ sec \theta = \frac{1}{x} $$
|
|
||||||
$$ csc = \frac{1}{y} $$
|
|
||||||
$$ cot \theta = \frac{x}{y} $$
|
|
||||||
|
|
||||||
## The Pythagorean Identity
|
|
||||||
The Pythagorean identity expresses the Pythagorean theorem in terms of trigonometric functions. It's a basic relation between the sine and cosine functions.
|
|
||||||
$$ sin^2 \theta + cos^2 \theta = 1 $$
|
|
||||||
|
|
||||||
# Definitions
|
# Definitions
|
||||||
|
|
||||||
| Term | Description |
|
| Term | Description |
|
||||||
|
Loading…
Reference in New Issue
Block a user