vault backup: 2025-10-06 12:29:06
This commit is contained in:
@@ -100,6 +100,10 @@ The above series converges if all three of the following hold true:
|
|||||||
- $\lim_{n\to\infty} a_n = 0$ as_
|
- $\lim_{n\to\infty} a_n = 0$ as_
|
||||||
This test does not provide any guarantees about divergence i.e if if the test fails, the series does not necessarily diverge.
|
This test does not provide any guarantees about divergence i.e if if the test fails, the series does not necessarily diverge.
|
||||||
|
|
||||||
A sequence a_n converges absolutely if sum `|a_n|` converges
|
A sequence $a_n$ *converges absolutely* if $\sum |a_n|$ converges
|
||||||
|
|
||||||
Then if the series converges absolutely then the sum converges.
|
Then if the *series converges* absolutely then the sum converges.
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
> Does the series $\sum_{n=1}^\infty (\frac{(-1)^n}{n+5}$ conditionally converge, absolutely converge, or diverge?
|
||||||
|
1. $\sum_{n=1}^\infty|\frac{(-1)^n}{n+5}| = \sum_{n=1}^\infty \frac{1}{n+5}$
|
||||||
|
Reference in New Issue
Block a user