From a5a0698807af5a92455e2063d22213fd06e29aac Mon Sep 17 00:00:00 2001 From: arc Date: Tue, 15 Apr 2025 09:06:58 -0600 Subject: [PATCH] vault backup: 2025-04-15 09:06:58 --- education/math/MATH1210 (calc 1)/Integrals.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/education/math/MATH1210 (calc 1)/Integrals.md b/education/math/MATH1210 (calc 1)/Integrals.md index 1d2e206..0486832 100644 --- a/education/math/MATH1210 (calc 1)/Integrals.md +++ b/education/math/MATH1210 (calc 1)/Integrals.md @@ -116,4 +116,6 @@ This theorem tells us that a continuous function on the closed interval will obt - $\int \cos(u) du = \sin(u) + C$ - $\int \dfrac{1}{\sqrt{a^2 - u^2}} du = \arcsin(\frac{u}{a}) +C$ - $\int \dfrac{1}{a^2+u^2}du = \dfrac{1}{a} \arctan(\frac{u}{a}) + C$ -- $\int \dfrac{1}{u\sqrt{u^2 - a^2}} du = \dfrac{1}{a}arcsec(\dfrac{|u|}{a}) + C$ \ No newline at end of file +- $\int \dfrac{1}{u\sqrt{u^2 - a^2}} du = \dfrac{1}{a}arcsec(\dfrac{|u|}{a}) + C$ + +# Length of a Curve