vault backup: 2025-09-29 12:45:33

This commit is contained in:
arc
2025-09-29 12:45:33 -06:00
parent 2986861672
commit a0a8d1c89c

View File

@ -65,3 +65,13 @@ $$ \sum_{n=1}^\infty \frac{1}{2^n} = \lim_{n \to \infty}S_n = \lim_{n \to \infty
- $S_2 = 1 + 2 = 3$
- $S_n = \frac{n(n+1)}{2}$
So:
$$ \lim_{n \to \infty} \frac{n(n+1)}{2} = \infty $$
Given the above info, the limit is non-zero, so we know that the series diverges.
## Geometric Series
A geometric series of the form:
$$ \sum_{n = 1}^\inifty ar^{n-1} = \sum_{n=0}^\infty ar^n $$
Converges to $\dfrac{a}{1-r}$ if $|r| < 1$ or diverges if $|r| >= 1$.
# E