vault backup: 2025-09-29 12:45:33
This commit is contained in:
@ -64,4 +64,14 @@ $$ \sum_{n=1}^\infty \frac{1}{2^n} = \lim_{n \to \infty}S_n = \lim_{n \to \infty
|
|||||||
- $S_1 = 1$
|
- $S_1 = 1$
|
||||||
- $S_2 = 1 + 2 = 3$
|
- $S_2 = 1 + 2 = 3$
|
||||||
- $S_n = \frac{n(n+1)}{2}$
|
- $S_n = \frac{n(n+1)}{2}$
|
||||||
So:
|
So:
|
||||||
|
$$ \lim_{n \to \infty} \frac{n(n+1)}{2} = \infty $$
|
||||||
|
|
||||||
|
Given the above info, the limit is non-zero, so we know that the series diverges.
|
||||||
|
|
||||||
|
## Geometric Series
|
||||||
|
A geometric series of the form:
|
||||||
|
$$ \sum_{n = 1}^\inifty ar^{n-1} = \sum_{n=0}^\infty ar^n $$
|
||||||
|
Converges to $\dfrac{a}{1-r}$ if $|r| < 1$ or diverges if $|r| >= 1$.
|
||||||
|
|
||||||
|
# E
|
Reference in New Issue
Block a user