vault backup: 2025-09-05 12:54:16

This commit is contained in:
arc
2025-09-05 12:54:16 -06:00
parent 3529515066
commit 97ae37f617

View File

@ -22,7 +22,7 @@ $$ -\int(1 - 2u^2 + u^4)du $$
6. Substituting $\cos(x)$ back in for $u$, we get the evaluated (but not entirely simplified) integral:
$$-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x) $$
# Trigonometric Substitutions
Trigonometric substitution is useful for equations containing something along the form of $\sqrt{a^2 + x^2}$ or $a^2 + x^2$.
Trigonometric substitution is useful for equations containing $\sqrt{a^2 + x^2}$ or $a^2 + x^2$, where $a$ is any constant.
The general process involves the use of a trig identity and multiplying everything in that identity by a constant.
@ -30,4 +30,15 @@ Consider the identity:
$$ 1 + \tan^2(\theta) = \sec^2(\theta)$$
Multiplying both sides of the identity by $a^2$, we get:
$$a^2 + a^2\tan^2(\theta) = a^2\sec^2(\theta)$$
This enables us to make use of **sub**
This enables us to make use of **substitution** to simplify many integrals.
- $x = a\tan \theta$
- $dx = a \sec^2\theta d\theta$
- for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$
# Examples
> Evaluate the integral $\int\frac{3}{4+x^2}dx$
1. Move the constant coefficient out of the integral:
$$ \int \frac{3}{4+x^2}dx = 3\int \frac{1}{4 + x^2}dx$$
2. Let $x = 2tan\theta$ and $dx = (2sec^2\theta d\theta)$, substitute accordingly
$$ = 3\int\frac{1}{4 + 4\tan^2\theta}(2\sec^2\theta)d\theta$$
3. Factor $4$