vault backup: 2025-09-05 12:54:16
This commit is contained in:
@ -22,7 +22,7 @@ $$ -\int(1 - 2u^2 + u^4)du $$
|
|||||||
6. Substituting $\cos(x)$ back in for $u$, we get the evaluated (but not entirely simplified) integral:
|
6. Substituting $\cos(x)$ back in for $u$, we get the evaluated (but not entirely simplified) integral:
|
||||||
$$-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x) $$
|
$$-(\cos(x)- \frac{2}{3}\cos^3x + \frac{1}{5}\cos^5x) $$
|
||||||
# Trigonometric Substitutions
|
# Trigonometric Substitutions
|
||||||
Trigonometric substitution is useful for equations containing something along the form of $\sqrt{a^2 + x^2}$ or $a^2 + x^2$.
|
Trigonometric substitution is useful for equations containing $\sqrt{a^2 + x^2}$ or $a^2 + x^2$, where $a$ is any constant.
|
||||||
|
|
||||||
The general process involves the use of a trig identity and multiplying everything in that identity by a constant.
|
The general process involves the use of a trig identity and multiplying everything in that identity by a constant.
|
||||||
|
|
||||||
@ -30,4 +30,15 @@ Consider the identity:
|
|||||||
$$ 1 + \tan^2(\theta) = \sec^2(\theta)$$
|
$$ 1 + \tan^2(\theta) = \sec^2(\theta)$$
|
||||||
Multiplying both sides of the identity by $a^2$, we get:
|
Multiplying both sides of the identity by $a^2$, we get:
|
||||||
$$a^2 + a^2\tan^2(\theta) = a^2\sec^2(\theta)$$
|
$$a^2 + a^2\tan^2(\theta) = a^2\sec^2(\theta)$$
|
||||||
This enables us to make use of **sub**
|
This enables us to make use of **substitution** to simplify many integrals.
|
||||||
|
- $x = a\tan \theta$
|
||||||
|
- $dx = a \sec^2\theta d\theta$
|
||||||
|
- for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$
|
||||||
|
|
||||||
|
# Examples
|
||||||
|
> Evaluate the integral $\int\frac{3}{4+x^2}dx$
|
||||||
|
1. Move the constant coefficient out of the integral:
|
||||||
|
$$ \int \frac{3}{4+x^2}dx = 3\int \frac{1}{4 + x^2}dx$$
|
||||||
|
2. Let $x = 2tan\theta$ and $dx = (2sec^2\theta d\theta)$, substitute accordingly
|
||||||
|
$$ = 3\int\frac{1}{4 + 4\tan^2\theta}(2\sec^2\theta)d\theta$$
|
||||||
|
3. Factor $4$
|
Reference in New Issue
Block a user