vault backup: 2025-09-03 11:32:07
This commit is contained in:
@ -14,4 +14,7 @@ $$ \int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
|
|||||||
|
|
||||||
Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$.
|
Now, let $u = f(x)$ and $v = g(x)$, then $dv = g'(x)dx$ and $du = f'(x)dx$.
|
||||||
|
|
||||||
# Examples
|
# Examples
|
||||||
|
> Evaluate the below antiderivative using integration by parts.
|
||||||
|
$$\int xe^{2x}dx$$
|
||||||
|
1. Define $u$ to be a value you can take the derivative of easily, in this case $u = x$,
|
Reference in New Issue
Block a user