vault backup: 2025-01-30 09:58:44

This commit is contained in:
arc 2025-01-30 09:58:44 -07:00
parent 4dd7ed010b
commit 92c8f5f38a

View File

@ -81,6 +81,13 @@ Then break into two different fractions:
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$
From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula:
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x) $$
# Natural Exponential Function
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x)*g(x) $$
# Constant Multiple Rule
$$ \dfrac{d}{dx}[c*f(x)] = c * f'(x) $$
# Quotient Rule
$$ \dfrac{d}{dx}(\dfrac{f(x)}{g(x)}) = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2} $$
# Exponential Rule
$$ \dfrac{d}{dx} e^x = e^x $$
$$ \dfrac{d}{dx}a^x