vault backup: 2025-01-30 09:58:44
This commit is contained in:
parent
4dd7ed010b
commit
92c8f5f38a
@ -81,6 +81,13 @@ Then break into two different fractions:
|
|||||||
|
|
||||||
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$
|
$$\lim_{h \to 0} \dfrac{f(x + h)}{1} * \dfrac{(g(x + h) - g(x))}{h)} + \dfrac{g(x)}{1} *\dfrac{f(x + h) - f(x)}{h} $$
|
||||||
From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula:
|
From here, you can take the limit of each fraction, therefore showing that to find the derivative of two values multiplied together, you can use the formula:
|
||||||
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x) $$
|
$$ \dfrac{d}{dx}(f(x) * g(x)) = f(x) * g'(x) + f'(x)*g(x) $$
|
||||||
# Natural Exponential Function
|
|
||||||
$$ \dfrac{d}{dx} e^x = e^x $$
|
# Constant Multiple Rule
|
||||||
|
$$ \dfrac{d}{dx}[c*f(x)] = c * f'(x) $$
|
||||||
|
# Quotient Rule
|
||||||
|
$$ \dfrac{d}{dx}(\dfrac{f(x)}{g(x)}) = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2} $$
|
||||||
|
|
||||||
|
# Exponential Rule
|
||||||
|
$$ \dfrac{d}{dx} e^x = e^x $$
|
||||||
|
$$ \dfrac{d}{dx}a^x
|
Loading…
x
Reference in New Issue
Block a user