diff --git a/education/math/MATH1060 (trig)/Identities.md b/education/math/MATH1060 (trig)/Identities.md index bddedb2..1382000 100644 --- a/education/math/MATH1060 (trig)/Identities.md +++ b/education/math/MATH1060 (trig)/Identities.md @@ -5,11 +5,12 @@ All of the following only apply when the denominator is not equal to zero. $$ tan \theta = \frac{y}{x} $$ Because the following are inverses of their counterparts, you only need to remember the equivalents for $sin$, $cos$, and $tan$, then just find the inverse by taking $1/v$. -| Identity | Inverse Identity | -| ------------------------------- | ------------------------------ | -| $$ sin\theta = y $$ | $$ csc\theta = \frac{1}{y} $$ | -| $$ cos\theta = x $$ | $$ sec \theta = \frac{1}{x} $$ | -| $$ tan\theta = \frac{sin\theta} | | +| Base Identity | Inverse Identity | Alternate Identities | Alternate Inverse Identities | +| ----------------------------- | ------------------------------ | --------------------------------------------- | ------------------------------------------------------------------------- | +| $$ sin\theta = y $$ | $$ csc\theta = \frac{1}{y} $$ | | $$ csc\theta = \frac{1}{sin\theta} $$ | +| $$ cos\theta = x $$ | $$ sec \theta = \frac{1}{x} $$ | | | +| $$ tan\theta = \frac{y}{x} $$ | $$ cot\theta = \frac{x}{y} $$ | $$ tan\theta = \frac{sin\theta}{cos\theta} $$ |
$$ cot\theta = \frac{1}{tan\theta} = \frac{cos\theta}{sin{\theta}} $$ | +| | | | | $$ cot \theta = \frac{x}{y} $$ $$ sec\theta = \frac{1}{cos\theta}$$ $$ csc\theta = \frac{1}{sin\theta}$$