vault backup: 2023-12-15 09:30:09
This commit is contained in:
parent
dc71731ef4
commit
84297cc2c5
2
.obsidian/plugins/obsidian-git/data.json
vendored
2
.obsidian/plugins/obsidian-git/data.json
vendored
@ -2,7 +2,7 @@
|
||||
"commitMessage": "vault backup: {{date}}",
|
||||
"autoCommitMessage": "vault backup: {{date}}",
|
||||
"commitDateFormat": "YYYY-MM-DD HH:mm:ss",
|
||||
"autoSaveInterval": 1,
|
||||
"autoSaveInterval": 5,
|
||||
"autoPushInterval": 0,
|
||||
"autoPullInterval": 5,
|
||||
"autoPullOnBoot": false,
|
||||
|
@ -4,4 +4,4 @@ Given the below problem, the two equations can't simplified further. So to find
|
||||
$$ \sqrt{x+2} + \sqrt{5-x} $$
|
||||
The below example has a domain of $[-2, 5)$ because $x$ cannot equal 0 for the denominator
|
||||
$$ \frac{\sqrt{x+2}}{\sqrt{5-x}} $$
|
||||
Assuming $f(x) = \frac{2}{x-3}$,
|
||||
Assuming $f(x) = \frac{2}{x-3}$, and $g(x) = \frac{5}{x+1}$, $(f\circ g)(x)$, you can find the domain by finding the domain for each function, then fully expanding it and seeing if any more unreachable numbers are included
|
Loading…
Reference in New Issue
Block a user