vault backup: 2023-12-15 09:30:09

This commit is contained in:
zleyyij 2023-12-15 09:30:09 -07:00
parent dc71731ef4
commit 84297cc2c5
2 changed files with 2 additions and 2 deletions

View File

@ -2,7 +2,7 @@
"commitMessage": "vault backup: {{date}}", "commitMessage": "vault backup: {{date}}",
"autoCommitMessage": "vault backup: {{date}}", "autoCommitMessage": "vault backup: {{date}}",
"commitDateFormat": "YYYY-MM-DD HH:mm:ss", "commitDateFormat": "YYYY-MM-DD HH:mm:ss",
"autoSaveInterval": 1, "autoSaveInterval": 5,
"autoPushInterval": 0, "autoPushInterval": 0,
"autoPullInterval": 5, "autoPullInterval": 5,
"autoPullOnBoot": false, "autoPullOnBoot": false,

View File

@ -4,4 +4,4 @@ Given the below problem, the two equations can't simplified further. So to find
$$ \sqrt{x+2} + \sqrt{5-x} $$ $$ \sqrt{x+2} + \sqrt{5-x} $$
The below example has a domain of $[-2, 5)$ because $x$ cannot equal 0 for the denominator The below example has a domain of $[-2, 5)$ because $x$ cannot equal 0 for the denominator
$$ \frac{\sqrt{x+2}}{\sqrt{5-x}} $$ $$ \frac{\sqrt{x+2}}{\sqrt{5-x}} $$
Assuming $f(x) = \frac{2}{x-3}$, Assuming $f(x) = \frac{2}{x-3}$, and $g(x) = \frac{5}{x+1}$, $(f\circ g)(x)$, you can find the domain by finding the domain for each function, then fully expanding it and seeing if any more unreachable numbers are included