vault backup: 2025-08-27 11:59:05
This commit is contained in:
@ -11,14 +11,19 @@ Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
|
|||||||
- Or, the width of each interval times the interval index, plus the starting offset.
|
- Or, the width of each interval times the interval index, plus the starting offset.
|
||||||
|
|
||||||
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
|
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
|
||||||
|
|
||||||
Then $\int_a^b f(x) dx = F(b) - F(a)$.
|
Then $\int_a^b f(x) dx = F(b) - F(a)$.
|
||||||
|
|
||||||
|
## Sum of an infinite series
|
||||||
|
The sum of an infinite series can be defined as follows:
|
||||||
|
$$ \sum_{i = 1}^n i = \frac{n(n+1)}{2}$$
|
||||||
|
|
||||||
## Examples
|
## Examples
|
||||||
1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$
|
1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$
|
||||||
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
|
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
|
||||||
2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$.
|
2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$.
|
||||||
$$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$
|
$$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$
|
||||||
> Using the fact that $x_i = \Delta x + a$, $
|
> Using the fact that $x_i = \Delta xi + a$, $f(x_i) = 2$
|
||||||
$$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$
|
$$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$
|
||||||
$$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$
|
$$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$
|
||||||
$$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$
|
$$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$
|
Reference in New Issue
Block a user