vault backup: 2025-08-27 11:59:05

This commit is contained in:
arc
2025-08-27 11:59:05 -06:00
parent 36557878b2
commit 7eb98a3eb3

View File

@ -11,14 +11,19 @@ Define $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^nf(x_i)\Delta x$$
- Or, the width of each interval times the interval index, plus the starting offset. - Or, the width of each interval times the interval index, plus the starting offset.
Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$). Then let $f$ be a continous function on $[a, b]$ and let $F$ be the antiderivative of $f$ (i.e $F'(x) = f(x)$).
Then $\int_a^b f(x) dx = F(b) - F(a)$. Then $\int_a^b f(x) dx = F(b) - F(a)$.
## Sum of an infinite series
The sum of an infinite series can be defined as follows:
$$ \sum_{i = 1}^n i = \frac{n(n+1)}{2}$$
## Examples ## Examples
1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$ 1. Find the area under the curve between 0 and 1 of the function $f(x) = x^2$
$$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$ $$ \int_0^1 x^2 dx = \frac{1}{3} x^3 \Big |_0^1 = 1/3(1^3)- 1/3 (0)^3 = 1/3$$
2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$. 2. Find the Riemann Sum under the curve between -2 and 2 of the function $2x + 2$.
$$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$ $$ \int_{-2}^2 (2x + 2)dx = \lim_{n \to \infty} \sum_{i = 1}^nf(x_i)\Delta x $$
> Using the fact that $x_i = \Delta x + a$, $ > Using the fact that $x_i = \Delta xi + a$, $f(x_i) = 2$
$$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$ $$ = lim_{n \to \infty} \sum_{i=1}^n(2x_i + 2)\frac{4}{n}$$
$$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$ $$ = \lim_{n \to \infty} \sum_{i = 1}^n (2(-2 +\frac{4i}{n}) + 2)\frac{4}{n}$$
$$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$ $$ = \lim_{n \to \infty} \sum_{i = 1}^n(-4 + \frac{8i}{n} + 2)\frac{4}{n} $$